Measure and Integral

Total Page:16

File Type:pdf, Size:1020Kb

Measure and Integral Measure and integral E. Kowalski ETH Zurich¨ [email protected] Contents Preamble 1 Introduction 2 Notation 4 Chapter 1. Measure theory 7 1.1. Algebras, σ-algebras, etc 8 1.2. Measure on a σ-algebra 14 1.3. The Lebesgue measure 20 1.4. Borel measures and regularity properties 22 Chapter 2. Integration with respect to a measure 24 2.1. Integrating step functions 24 2.2. Integration of non-negative functions 26 2.3. Integrable functions 33 2.4. Integrating with respect to the Lebesgue measure 41 Chapter 3. First applications of the integral 46 3.1. Functions defined by an integral 46 3.2. An example: the Fourier transform 49 3.3. Lp-spaces 52 3.4. Probabilistic examples: the Borel-Cantelli lemma and the law of large numbers 65 Chapter 4. Measure and integration on product spaces 75 4.1. Product measures 75 4.2. Application to random variables 82 4.3. The Fubini{Tonelli theorems 86 4.4. The Lebesgue integral on Rd 90 Chapter 5. Integration and continuous functions 98 5.1. Introduction 98 5.2. The Riesz representation theorem 100 5.3. Proof of the Riesz representation theorem 103 5.4. Approximation theorems 113 5.5. Simple applications 116 5.6. Application of uniqueness properties of Borel measures 119 5.7. Probabilistic applications of Riesz's Theorem 125 Chapter 6. The convolution product 132 6.1. Definition 132 6.2. Existence of the convolution product 133 6.3. Regularization properties of the convolution operation 137 ii 6.4. Approximation by convolution 140 Bibliography 146 iii Preamble This course is an English translation and adaptation with minor changes of the French lecture notes I had written for a course of integration, Fourier analysis and probability in Bordeaux, which I taught in 2001/02 and the following two years. The only difference worth mentioning between these notes and other similar treat- ments of integration theory is the incorporation \within the flow" of notions of probability theory (instead of having a specific chapter on probability). These probabilistic asides { usually identified with a grey bar on the left margin { can be disregarded by readers who are interested only in measure theory and integration for classical analysis. The index will (when actually present) highlight those sections in a specific way so that they are easy to read independently. Acknowledgements. Thanks to the students who pointed out typos and inacurra- cies in the text as I was preparing it, in particular S. Tornier. 1 Introduction The integral of a function was defined first for fairly regular functions defined on a closed interval; its two fundamental properties are that the operation of indefinite integration (with variable end point) is the operation inverse of differentiation, while the definite integral over a fixed interval has a geometric interpretation in terms of area (if the function is non-negative, it is the area under the graph of the function and above the axis of the variable of integration). However, the integral, as it is first learnt, and as it was defined until the early 20th century (the Riemann integral), has a number of flaws which become quite obvious and problematic when it comes to dealing with situations beyond those of a continuous func- tion f :[a; b] ! C defined on a closed interval in R. To describe this, we recall briefly the essence of the definition. It is based on ap- proaching the desired integral Z b f(t)dt a with Riemann sums of the type N X S(f) = (yi − yi−1) sup f(x) y x y i=1 i−16 6 i where we have a subdivision (0.1) a = y0 < y1 < ··· < yN = b of [a; b]. Indeed, if f is Riemann-integrable, such sums will converge to the integral when a sequence of subdivisions where the steps max jyi − yi−1j converge to 0. Here are some of the difficulties that arise in working with this integral. • Compatibility with other limiting processes: let (fn) be a sequence of (continu- ous) functions on [a; b] \converging" to a function f, in some sense. It is not always true that Z b Z b (0.2) lim fn(t)dt = f(t)dt; n!+1 a a and in fact, with Riemann's definition, f may fail to be integrable. The problem, as often in analysis, is to justify a certain exchange of two limits, and this turns out to be quite difficult. The only case where the formula can be shown to hold very easily is when fn ! f uniformly on [a; b]: then f is continuous, and (0.2) holds. However, it is often very hard to check uniform convergence, and it often fails to hold. This becomes even more of a problem when working with integrals over unbounded sets like ]−1; +1[, which are themselves limits of integrals over ]a; b[ as a ! −∞ and b + 1: in effect, we then have three limiting processes to juggle. 2 The following simple example illustrates that one will always need some care: let [a; b] = [0; 1] and 8 2n2x if 0 x 1 <> 6 6 2n 2 1 1 (0.3) fn(x) = 2n − 2n x if 2n 6 x 6 n :> 1 0 if n 6 x 6 1 so that fn(x) ! 0 for all x 2 [0; 1] (since fn(0) = 0 and the sequence becomes constant for all n > x−1 if x 2]0; 1]), while Z 1 fn(x)dx = 1 0 for all n. • Multiple integrals: just like that integral Z b f(t)dt a has a geometric interpretation when f(t) > 0 on [a; b] as the area of the plane domain situated between the x-axis and the graph of f, one is tempted to write down integrals with more than one variable to compute the volume of a solid in R3, or the surface area bounded by such a solid (e.g., the surface of a sphere). Riemann's definition encounters very serious difficulties here because the lack of a natural ordering of the plane makes it difficult to find suitable analogues of the subdivisions used for one-variable integration. And even if some definition is found, the justification of the expected formula of exchange of the variables of integration Z b Z d Z d Z b (0.4) f(x; y)dxdy = f(x; y)dydx a c c a is usually very difficult. • Probability: suppose one wants to give a precise mathematical sense to such intuitive statements as \a number taken at random between 0 and 1 has proba- bility 1=2 of being > 1=2"; it quickly seems natural to say that the probability that x 2 [0; 1] satisfy a certain property P is Z b (b − a) = dx a if the set I(P) of those x 2 [0; 1] where P holds is equal to the interval [a; b]. Very quickly, however, one is led to construct properties which are quite natural, yet I(P) is not an interval, or even a finite disjoint union of intervals! For example, let P be the property: \there is no 1 in the digital expansion x = 0; d1d2 ··· of x in basis 3, di 2 f0; 1; 2g." What is the probability of this? • Infinite integrals: as already mentioned, in Riemann's method, an integral like Z +1 f(t)dt a is defined a posteriori as limit of integrals from a to b, with b ! +1. This implies that all desired properties of these integrals be checked separately { and involves therefore an additional limiting process. This becomes even more problematic 3 when one tries to define and study functions defined by such integrals, like the Fourier transform of a function f : R ! C by the formula Z f^(t) = f(x)e−ixtdx −∞ for t 2 R. H. Lebesgue, who introduced the new integration that we will study in this course as the beginning of the 20th century used to present the fundamental idea of his method as follows. Suppose you wish to compute the sum S (seen as a discrete analogue of the integral) of finitely many real numbers, say a1; a2; : : : ; an (which might be, as in the nice illustration that Lebesgue used, the successive coins found in your pocket, as you try to ascertain your wealth). The \Riemann" way is to take each coin in turn and add their values one by one: S = a1 + ··· + an: However, there is a different way to do this, which in fact is almost obvious (in the example of counting money): one can take all the coins, sort them into stacks correspond- ing to the possibles values they represent, and compute the sum by adding the different values multiplied by the number of each of the coins that occur: if b1,..., bm are the different values among the ai's, let Nj = number of i 6 n with ai = bj; denote the corresponding multiplicity, and then we have S = b1 × N1 + ··· + bm × Nm: One essential difference is that in the second procedure, the order in which the coins appear is irrelevant; this is what will allow the definition of integration with respect to a measure to be uniformly valid and suitable for integrating over almost arbitrary sets, n and in particular over any space R with n > 1. To implement the idea behind Lebesgue's story, the first step, however, is to be able to give a meaning to the analogue of the multiplicities Nj when dealing with functions taking possibly infinitely many values, and defined on continuous sets.
Recommended publications
  • Measure-Theoretic Probability I
    Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go.
    [Show full text]
  • Measure, Integral and Probability
    Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • Measure Theory and Probability
    Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure.................
    [Show full text]
  • The Radon-Nikodym Theorem
    The Radon-Nikodym Theorem Yongheng Zhang Theorem 1 (Johann Radon-Otton Nikodym). Let (X; B; µ) be a σ-finite measure space and let ν be a measure defined on B such that ν µ. Then there is a unique nonnegative measurable function f up to sets of µ-measure zero such that Z ν(E) = fdµ, E for every E 2 B. f is called the Radon-Nikodym derivative of ν with respect to µ and it is often dν denoted by [ dµ ]. The assumption that the measure µ is σ-finite is crucial in the theorem (but we don't have this requirement directly for ν). Consider the following two examples in which the µ's are not σ-finite. Example 1. Let (R; M; ν) be the Lebesgue measure space. Let µ be the counting measure on M. So µ is not σ-finite. For any E 2 M, if µ(E) = 0, then E = ; and hence ν(E) = 0. This shows ν µ. Do we have the associated Radon-Nikodym derivative? Never. Suppose we have it and call it R R f, then for each x 2 R, 0 = ν(fxg) = fxg fdµ = fxg fχfxgdµ = f(x)µ(fxg) = f(x). Hence, f = 0. R This means for every E 2 M, ν(E) = E 0dµ = 0, which contradicts that ν is the Lebesgue measure. Example 2. ν is still the same measure above but we let µ to be defined by µ(;) = 0 and µ(A) = 1 if A 6= ;. Clearly, µ is not σ-finite and ν µ.
    [Show full text]
  • Delta Functions and Distributions
    When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on.
    [Show full text]
  • Harmonic Analysis Meets Geometric Measure Theory
    Geometry of Measures: Harmonic Analysis meets Geometric Measure Theory T. Toro ∗ 1 Introduction One of the central questions in Geometric Measure Theory is the extend to which the regularity of a measure determines the geometry of its support. This type of question was initially studied by Besicovitch, and then pursued by many authors among others Marstrand, Mattila and Preiss. These authors focused their attention on the extend to which the behavior of the density ratio of a m given Radon measure µ in R with respect to Hausdorff measure determines the regularity of the µ(B(x;r)) m support of the measure, i.e. what information does the quantity rs for x 2 R , r > 0 and s > 0 encode. In the context of the study of minimizers of area, perimeter and similar functionals the correct density ratio is monotone, the density exists and its behavior is the key to study the regularity and structure of these minimizers. This question has also been studied in the context of Complex Analysis. In this case, the Radon measure of interest is the harmonic measure. The general question is to what extend the structure of the boundary of a domain can be fully understood in terms of the behavior of the harmonic measure. Some of the first authors to study this question were Carleson, Jones, Wolff and Makarov. The goal of this paper is to present two very different type of problems, and the unifying techniques that lead to a resolution of both. In Section 2 we look at the history of the question initially studied by Besicovitch in dimension 2, as well as some of its offsprings.
    [Show full text]
  • An Approximate Logic for Measures
    AN APPROXIMATE LOGIC FOR MEASURES ISAAC GOLDBRING AND HENRY TOWSNER Abstract. We present a logical framework for formalizing connections be- tween finitary combinatorics and measure theory or ergodic theory that have appeared in various places throughout the literature. We develop the basic syntax and semantics of this logic and give applications, showing that the method can express the classic Furstenberg correspondence as well as provide short proofs of the Szemer´edi Regularity Lemma and the hypergraph removal lemma. We also derive some connections between the model-theoretic notion of stability and the Gowers uniformity norms from combinatorics. 1. Introduction Since the 1970’s, diagonalization arguments (and their generalization to ul- trafilters) have been used to connect results in finitary combinatorics with results in measure theory or ergodic theory [14]. Although it has long been known that this connection can be described with first-order logic, a recent striking paper by Hrushovski [22] demonstrated that modern developments in model theory can be used to give new substantive results in this area as well. Papers on various aspects of this interaction have been published from a va- riety of perspectives, with almost as wide a variety of terminology [30, 10, 9, 1, 32, 13, 4]. Our goal in this paper is to present an assortment of these techniques in a common framework. We hope this will make the entire area more accessible. We are typically concerned with the situation where we wish to prove a state- ment 1) about sufficiently large finite structures which 2) concerns the finite analogs of measure-theoretic notions such as density or integrals.
    [Show full text]
  • Representation of the Dirac Delta Function in C(R)
    Representation of the Dirac delta function in C(R∞) in terms of infinite-dimensional Lebesgue measures Gogi Pantsulaia∗ and Givi Giorgadze I.Vekua Institute of Applied Mathematics, Tbilisi - 0143, Georgian Republic e-mail: [email protected] Georgian Technical University, Tbilisi - 0175, Georgian Republic g.giorgadze Abstract: A representation of the Dirac delta function in C(R∞) in terms of infinite-dimensional Lebesgue measures in R∞ is obtained and some it’s properties are studied in this paper. MSC 2010 subject classifications: Primary 28xx; Secondary 28C10. Keywords and phrases: The Dirac delta function, infinite-dimensional Lebesgue measure. 1. Introduction The Dirac delta function(δ-function) was introduced by Paul Dirac at the end of the 1920s in an effort to create the mathematical tools for the development of quantum field theory. He referred to it as an improper functional in Dirac (1930). Later, in 1947, Laurent Schwartz gave it a more rigorous mathematical definition as a spatial linear functional on the space of test functions D (the set of all real-valued infinitely differentiable functions with compact support). Since the delta function is not really a function in the classical sense, one should not consider the value of the delta function at x. Hence, the domain of the delta function is D and its value for f ∈ D is f(0). Khuri (2004) studied some interesting applications of the delta function in statistics. The purpose of the present paper is an introduction of a concept of the Dirac delta function in the class of all continuous functions defined in the infinite- dimensional topological vector space of all real valued sequences R∞ equipped arXiv:1605.02723v2 [math.CA] 14 May 2016 with Tychonoff topology and a representation of this functional in terms of infinite-dimensional Lebesgue measures in R∞.
    [Show full text]
  • A User-Friendly Introduction to Lebesgue Measure and Integration Gail S
    STUDENT MATHEMATICAL LIBRARY Volume 78 A User-Friendly Introduction to Lebesgue Measure and Integration Gail S. Nelson http://dx.doi.org/10.1090/stml/078 STUDENT MATHEMATICAL LIBRARY Volume 78 A User-Friendly Introduction to Lebesgue Measure and Integration Gail S. Nelson American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 26-XX, 28-XX. For additional information and updates on this book, visit www.ams.org/bookpages/stml-78 Library of Congress Cataloging-in-Publication Data Nelson, Gail Susan. A user-friendly introduction to Lebesgue measure and integration / Gail S. Nelson. pages cm. – (Student mathematical library ; volume 78) Includes bibliographical references and index. ISBN 978-1-4704-2199-1 (alk. paper) 1. Measure theory. 2. Lebesgue integral. 3. Integration, Functional. I. Title. QC20.7.M43N45 2015 515.83–dc23 2015022834 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http:// www.ams.org/rightslink. Send requests for translation rights and licensed reprints to reprint-permission @ams.org.
    [Show full text]
  • Dynamic Ham-Sandwich Cuts in the Plane∗
    Dynamic Ham-Sandwich Cuts in the Plane∗ Timothy G. Abbott† Michael A. Burr‡ Timothy M. Chan§ Erik D. Demaine† Martin L. Demaine† John Hugg¶ Daniel Kanek Stefan Langerman∗∗ Jelani Nelson† Eynat Rafalin†† Kathryn Seyboth¶ Vincent Yeung† Abstract We design efficient data structures for dynamically maintaining a ham-sandwich cut of two point sets in the plane subject to insertions and deletions of points in either set. A ham- sandwich cut is a line that simultaneously bisects the cardinality of both point sets. For general point sets, our first data structure supports each operation in O(n1/3+ε) amortized time and O(n4/3+ε) space. Our second data structure performs faster when each point set decomposes into a small number k of subsets in convex position: it supports insertions and deletions in O(log n) time and ham-sandwich queries in O(k log4 n) time. In addition, if each point set has convex peeling depth k, then we can maintain the decomposition automatically using O(k log n) time per insertion and deletion. Alternatively, we can view each convex point set as a convex polygon, and we show how to find a ham-sandwich cut that bisects the total areas or total perimeters of these polygons in O(k log4 n) time plus the O((kb) polylog(kb)) time required to approximate the root of a polynomial of degree O(k) up to b bits of precision. We also show how to maintain a partition of the plane by two lines into four regions each containing a quarter of the total point count, area, or perimeter in polylogarithmic time.
    [Show full text]