Measure Theory and Lebesgue Integration

Total Page:16

File Type:pdf, Size:1020Kb

Measure Theory and Lebesgue Integration Appendix D Measure theory and Lebesgue integration ”As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.” Albert Einstein (1879-1955) In this appendix, we will briefly recall the main concepts and results about the measure theory and Lebesgue integration. Then, we will introduce the Lp spaces that prove especially useful in the analysis of the solutions of partial differential equations. Contents D.1 Measure theory . 107 D.2 Riemann integration . 109 D.3 Lebesgue integration . 111 D.4 Lp spaces . 116 D.1 Measure theory Measure theory initially was proposed to provide an analysis of and generalize notions such as length, area and volume (not strictly related to physical sizes) of subsets of Euclidean spaces. The approach to measure and integration is axomatic, i.e. a measure is any function µ defined on subsets which satisfy a cetain list of properties. In this respect, measure theory is a branch of real analysis which investigates, among other concepts, measurable functions and integrals. D.1.1 Definitions and properties Definition D.1 A collection S of subsets of a set X is said to be a topology in X is S has the following three properties: (i) S and X S, ∅ ∈ ∈ 107 108 Chapter D. Measure theory and Lebesgue integration (ii) if V S for i = 1, . , n then, V V V S, i ∈ 1 ∩ 2 ∩ · · · ∩ n ∈ (iii) if V is an arbitrary collection of members of S (finite, countable or not), then V inS. { α} α α if S is a topology in X, then X is called a topological space and the members of S are!called the open sets in X. Definition D.2 A collection F of subsets of a set X is said to be a σ-algebra in X if F has the following three properties: (i) X F , ∈ (ii) if A F , then Ac F , where Ac is the complement of A relatie to X, ∈ ∈ (iii) if A = ∞ A and if A F for all n, then A F . n=1 n n ∈ ∈ If F is a σ-algebra! in X, then the pair (X, F ) is called a measurable space . If X is a measurable space, Y is a topological space and f is a mapping of X into Y , then f is said to be measurable provided that 1 f − (V ) is a measurable set in X for every open set V in Y . Definition D.3 A measure is a function defined on a σ-algebra F over a set X and taking values in the interval [0, [ such that the following properties are satisfied: ∞ (i) the emptyset has measure zero, µ( ) = 0; ∅ (ii) countable additivity: if (Ei) is a countable sequence of pairwise disjoint sets in F , then ∞ ∞ µ Ei = µ(Ei) . " $ i#=1 %i=1 The triple (X, F, µ) is then called a measure space and the members of F are called measurable sets. For measure spaces that are also topological spaces, various compatibility conditions can be placed for the measure and the topology. Theorem D.1 Let f and g be real measurable functions on a measurable space X, let Φ be a continuous mapping of the plane into a topological space Y and define h(x) = Φ(u(x), v(x)) for x X. Then, ∈ h : X Y is measurable. → Proposition D.1 If E is a measurable set in X and if 1 if x E χ (x) = ∈ E 0 if x / E & ∈ then, χE is a measurable function called the characteristic function of the set E. Definition D.4 Let (a ) be a sequence in [ , ] and put n −∞ ∞ b = sup a , a , a , . k = 1, 2, 3, . k { k k+1 k+2 } and β = inf b , b , b , . We call β the upper limit of (a ) and write { 1 2 3 } n β = lim sup an . n →∞ D.2. Riemann integration 109 The lower limit is defined analogously by interchanging sup and inf in the previous definition. Moreover, we have lim inf an = lim sup( an) , n − n − →∞ →∞ and, if (an) converges, then lim sup an = lim inf an = lim an . n n n →∞ →∞ → Supose (fn) is a sequence of real functions on a set X. Then supn fn and lim supn fn are the functions defined on X by: →∞ (sup fn)(x) = sup(fn(x)) , (lim sup fn)(x) = lim sup(fn(x)) . n n n n →∞ →∞ Moreover, if f(x) = limn fn(x) the limit being assumed to exist at every x X, then f is called the →∞ ∈ pointwise limit of the sequence (fn). Theorem D.2 If fn : X R is measurable, for n = 1, 2, . and → g = sup fn , h = lim sup fn , n 1 n ≥ →∞ then g and h are both measurable. Corollary D.1 The limit of very pointwise convergent sequence of complex measurable functions is mea- surable. If f and g are measurable then so are max(f, g) and min(f, g). In particular, this is true of the functions + f = max(f, 0) and f − = min(f, 0) , − respectively called the positiveand negative parts of f. We have f = f + f and f = f + + f . − − | | − Proposition D.2 If f = g h, g 0 and h 0 then f + g and f h. − ≥ ≥ ≤ − ≤ D.1.2 Completeness A measurable set X is called a null set if µ(X) = 0. By extension, a subset of a null set is called a negligible set. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called complete if every negligible set is measurable. A measure can be extended to a complete one by considering the σ-algebra of subsets Y which differ by a negligible set from a measurable set X, that is, such that the symmetric difference of X and Y is contained in a null set. One defines µ(Y ) to equal µ(X). D.1.3 Non-measureable sets D.2 Riemann integration Suppose that a function f is bounded on the interval [a, b], where a, b R and a < b and consider a ∈ dissection ∆ : a = x < x < < x = b of [a, b]. Then, 0 1 · · · n 110 Chapter D. Measure theory and Lebesgue integration Definition D.5 (Riemann sum) The lower Riemann sum of f(x) corresponding to the dissection ∆ is defined as the following sum: n s(f, ∆) = (xj xj 1 inf f(x) − − x [xj 1,xj ] %j=1 ∈ − anf the upper Riemann sum of f(x) corresponding to the dissection ∆ is given by the sum: n S(f, ∆) = (xj xj 1 sup f(x) . − − x [xj 1,xj ] %j=1 ∈ − Theorem D.3 Suppose that a function f : R R is bounded on [a, b], where a < b, a, b R and that → ∈ ∆ and ∆ are two dissections of [a, b] such that ∆ ∆. Then, & & ⊆ s(f, δ&) s(f, ∆) and S(f, ∆) S(f, ∆&) . ≤ ≤ If ∆&& is another dissection of [a, b] then, s(f, ∆&) S(f, ∆&&) . ≤ Definition D.6 For all dissections ∆ of [a, b], the real number I−(f, a, b) = sup s(f, ∆) is called the ∆ lower integral of f(x) over [a, b] and the real number I+(f, a, b) = inf S(f, ∆) is called the upper integral ∆ of f(x) over [a, b]. Theorem D.4 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b R. ∈ Then + I−(f, a, b) I (f, a, b) . ≤ Definition D.7 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b R + ∈ and suppose that I−(f, a, b) = I (f, a, b). Then, the function f is said to be Riemann integrable over [a, b] and we write b + f(x) dx = I−(f, a, b) = I (f, a, b) . 'a Lemma D.1 Suppose that a function f is bounded on the interval [a, b], where a < b and a, b R. The ∈ following two statements are equivalent: (i) f is Riemann integrable over [a, b] (ii) given any ε > 0, there exists a dissection ∆ of [a, b] such that S(f, ∆) s(f, ∆) < ε . − We have several additional properties of Riemann integrals. Lemma D.2 Suppose that f, g are Riemann integrable over [a, b], where a < b and a, b R. Then ∈ b b b (i) f + g is Riemann integrable over [a, b] and (f(x) + g(x)) dx = f(x) dx + g(x) dx, 'a 'a 'a b b (ii) for every c R, cf is Riemann integrable over [a, b] and cf(x) dx = c f(x) dx, ∈ 'a 'A D.3. Lebesgue integration 111 b (iii) if f(x) 0 for every x [a, b] then f(x) dx 0, ≥ ∈ ≥ 'a b b (iv) if f(x) g(x) for every x [a, b] then f(x) dx g(x) dx. ≥ ∈ ≥ 'a 'a Proposition D.3 Suppose that f is Riemann integrable over [a, b] where a, b R and a < b. Then, ∈ for every real number c [a, b], f is Riemann integrable over [a, c] and Riemann integrable over [c, b]. ∈ Moreover, we can write: b c b f(x) dx = f(x) dx + f(x) dx . 'A 'a 'c Similarly, we have the following result. Proposition D.4 Suppose that a, b, c R and that a < c < b. Suppose further that f is Riemann ∈ integrable over [a, c] and is Riemann integrable over [c, b].
Recommended publications
  • The Fundamental Theorem of Calculus for Lebesgue Integral
    Divulgaciones Matem´aticasVol. 8 No. 1 (2000), pp. 75{85 The Fundamental Theorem of Calculus for Lebesgue Integral El Teorema Fundamental del C´alculo para la Integral de Lebesgue Di´omedesB´arcenas([email protected]) Departamento de Matem´aticas.Facultad de Ciencias. Universidad de los Andes. M´erida.Venezuela. Abstract In this paper we prove the Theorem announced in the title with- out using Vitali's Covering Lemma and have as a consequence of this approach the equivalence of this theorem with that which states that absolutely continuous functions with zero derivative almost everywhere are constant. We also prove that the decomposition of a bounded vari- ation function is unique up to a constant. Key words and phrases: Radon-Nikodym Theorem, Fundamental Theorem of Calculus, Vitali's covering Lemma. Resumen En este art´ıculose demuestra el Teorema Fundamental del C´alculo para la integral de Lebesgue sin usar el Lema del cubrimiento de Vi- tali, obteni´endosecomo consecuencia que dicho teorema es equivalente al que afirma que toda funci´onabsolutamente continua con derivada igual a cero en casi todo punto es constante. Tambi´ense prueba que la descomposici´onde una funci´onde variaci´onacotada es ´unicaa menos de una constante. Palabras y frases clave: Teorema de Radon-Nikodym, Teorema Fun- damental del C´alculo,Lema del cubrimiento de Vitali. Received: 1999/08/18. Revised: 2000/02/24. Accepted: 2000/03/01. MSC (1991): 26A24, 28A15. Supported by C.D.C.H.T-U.L.A under project C-840-97. 76 Di´omedesB´arcenas 1 Introduction The Fundamental Theorem of Calculus for Lebesgue Integral states that: A function f :[a; b] R is absolutely continuous if and only if it is ! 1 differentiable almost everywhere, its derivative f 0 L [a; b] and, for each t [a; b], 2 2 t f(t) = f(a) + f 0(s)ds: Za This theorem is extremely important in Lebesgue integration Theory and several ways of proving it are found in classical Real Analysis.
    [Show full text]
  • [Math.FA] 3 Dec 1999 Rnfrneter for Theory Transference Introduction 1 Sas Ihnrah U Twl Etetdi Eaaepaper
    Transference in Spaces of Measures Nakhl´eH. Asmar,∗ Stephen J. Montgomery–Smith,† and Sadahiro Saeki‡ 1 Introduction Transference theory for Lp spaces is a powerful tool with many fruitful applications to sin- gular integrals, ergodic theory, and spectral theory of operators [4, 5]. These methods afford a unified approach to many problems in diverse areas, which before were proved by a variety of methods. The purpose of this paper is to bring about a similar approach to spaces of measures. Our main transference result is motivated by the extensions of the classical F.&M. Riesz Theorem due to Bochner [3], Helson-Lowdenslager [10, 11], de Leeuw-Glicksberg [6], Forelli [9], and others. It might seem that these extensions should all be obtainable via transference methods, and indeed, as we will show, these are exemplary illustrations of the scope of our main result. It is not straightforward to extend the classical transference methods of Calder´on, Coif- man and Weiss to spaces of measures. First, their methods make use of averaging techniques and the amenability of the group of representations. The averaging techniques simply do not work with measures, and do not preserve analyticity. Secondly, and most importantly, their techniques require that the representation is strongly continuous. For spaces of mea- sures, this last requirement would be prohibitive, even for the simplest representations such as translations. Instead, we will introduce a much weaker requirement, which we will call ‘sup path attaining’. By working with sup path attaining representations, we are able to prove a new transference principle with interesting applications. For example, we will show how to derive with ease generalizations of Bochner’s theorem and Forelli’s main result.
    [Show full text]
  • Shape Analysis, Lebesgue Integration and Absolute Continuity Connections
    NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal Applied and Computational Mathematics Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 July 2018 INCLUDES UPDATES AS OF 07-18-2018; SEE APPENDIX U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology ______________________________________________________________________________________________________ This Shape Analysis, Lebesgue Integration and publication Absolute Continuity Connections Javier Bernal is National Institute of Standards and Technology, available Gaithersburg, MD 20899, USA free of Abstract charge As shape analysis of the form presented in Srivastava and Klassen’s textbook “Functional and Shape Data Analysis” is intricately related to Lebesgue integration and absolute continuity, it is advantageous from: to have a good grasp of the latter two notions. Accordingly, in these notes we review basic concepts and results about Lebesgue integration https://doi.org/10.6028/NIST.IR.8217 and absolute continuity. In particular, we review fundamental results connecting them to each other and to the kind of shape analysis, or more generally, functional data analysis presented in the aforeme- tioned textbook, in the process shedding light on important aspects of all three notions. Many well-known results, especially most results about Lebesgue integration and some results about absolute conti- nuity, are presented without proofs.
    [Show full text]
  • An Introduction to Measure Theory Terence
    An introduction to measure theory Terence Tao Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: [email protected] To Garth Gaudry, who set me on the road; To my family, for their constant support; And to the readers of my blog, for their feedback and contributions. Contents Preface ix Notation x Acknowledgments xvi Chapter 1. Measure theory 1 x1.1. Prologue: The problem of measure 2 x1.2. Lebesgue measure 17 x1.3. The Lebesgue integral 46 x1.4. Abstract measure spaces 79 x1.5. Modes of convergence 114 x1.6. Differentiation theorems 131 x1.7. Outer measures, pre-measures, and product measures 179 Chapter 2. Related articles 209 x2.1. Problem solving strategies 210 x2.2. The Radamacher differentiation theorem 226 x2.3. Probability spaces 232 x2.4. Infinite product spaces and the Kolmogorov extension theorem 235 Bibliography 243 vii viii Contents Index 245 Preface In the fall of 2010, I taught an introductory one-quarter course on graduate real analysis, focusing in particular on the basics of mea- sure and integration theory, both in Euclidean spaces and in abstract measure spaces. This text is based on my lecture notes of that course, which are also available online on my blog terrytao.wordpress.com, together with some supplementary material, such as a section on prob- lem solving strategies in real analysis (Section 2.1) which evolved from discussions with my students. This text is intended to form a prequel to my graduate text [Ta2010] (henceforth referred to as An epsilon of room, Vol. I ), which is an introduction to the analysis of Hilbert and Banach spaces (such as Lp and Sobolev spaces), point-set topology, and related top- ics such as Fourier analysis and the theory of distributions; together, they serve as a text for a complete first-year graduate course in real analysis.
    [Show full text]
  • Generalizations of the Riemann Integral: an Investigation of the Henstock Integral
    Generalizations of the Riemann Integral: An Investigation of the Henstock Integral Jonathan Wells May 15, 2011 Abstract The Henstock integral, a generalization of the Riemann integral that makes use of the δ-fine tagged partition, is studied. We first consider Lebesgue’s Criterion for Riemann Integrability, which states that a func- tion is Riemann integrable if and only if it is bounded and continuous almost everywhere, before investigating several theoretical shortcomings of the Riemann integral. Despite the inverse relationship between integra- tion and differentiation given by the Fundamental Theorem of Calculus, we find that not every derivative is Riemann integrable. We also find that the strong condition of uniform convergence must be applied to guarantee that the limit of a sequence of Riemann integrable functions remains in- tegrable. However, by slightly altering the way that tagged partitions are formed, we are able to construct a definition for the integral that allows for the integration of a much wider class of functions. We investigate sev- eral properties of this generalized Riemann integral. We also demonstrate that every derivative is Henstock integrable, and that the much looser requirements of the Monotone Convergence Theorem guarantee that the limit of a sequence of Henstock integrable functions is integrable. This paper is written without the use of Lebesgue measure theory. Acknowledgements I would like to thank Professor Patrick Keef and Professor Russell Gordon for their advice and guidance through this project. I would also like to acknowledge Kathryn Barich and Kailey Bolles for their assistance in the editing process. Introduction As the workhorse of modern analysis, the integral is without question one of the most familiar pieces of the calculus sequence.
    [Show full text]
  • Measure, Integral and Probability
    Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e.
    [Show full text]
  • Stability in the Almost Everywhere Sense: a Linear Transfer Operator Approach ∗ R
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector J. Math. Anal. Appl. 368 (2010) 144–156 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Stability in the almost everywhere sense: A linear transfer operator approach ∗ R. Rajaram a, ,U.Vaidyab,M.Fardadc, B. Ganapathysubramanian d a Dept. of Math. Sci., 3300, Lake Rd West, Kent State University, Ashtabula, OH 44004, United States b Dept. of Elec. and Comp. Engineering, Iowa State University, Ames, IA 50011, United States c Dept. of Elec. Engineering and Comp. Sci., Syracuse University, Syracuse, NY 13244, United States d Dept. of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States article info abstract Article history: The problem of almost everywhere stability of a nonlinear autonomous ordinary differential Received 20 April 2009 equation is studied using a linear transfer operator framework. The infinitesimal generator Available online 20 February 2010 of a linear transfer operator (Perron–Frobenius) is used to provide stability conditions of Submitted by H. Zwart an autonomous ordinary differential equation. It is shown that almost everywhere uniform stability of a nonlinear differential equation, is equivalent to the existence of a non-negative Keywords: Almost everywhere stability solution for a steady state advection type linear partial differential equation. We refer Advection equation to this non-negative solution, verifying almost everywhere global stability, as Lyapunov Density function density. A numerical method using finite element techniques is used for the computation of Lyapunov density. © 2010 Elsevier Inc. All rights reserved. 1. Introduction Stability analysis of an ordinary differential equation is one of the most fundamental problems in the theory of dynami- cal systems.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • Computing the Bayes Factor from a Markov Chain Monte Carlo
    Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution Martin D. Weinberg∗ Department of Astronomy University of Massachusetts, Amherst, USA Abstract Computation of the marginal likelihood from a simulated posterior distribution is central to Bayesian model selection but is computationally difficult. The often-used harmonic mean approximation uses the posterior directly but is unstably sensitive to samples with anomalously small values of the likelihood. The Laplace approximation is stable but makes strong, and of- ten inappropriate, assumptions about the shape of the posterior distribution. It is useful, but not general. We need algorithms that apply to general distributions, like the harmonic mean approximation, but do not suffer from convergence and instability issues. Here, I argue that the marginal likelihood can be reliably computed from a posterior sample by careful attention to the numerics of the probability integral. Posing the expression for the marginal likelihood as a Lebesgue integral, we may convert the harmonic mean approximation from a sample statistic to a quadrature rule. As a quadrature, the harmonic mean approximation suffers from enor- mous truncation error as consequence . This error is a direct consequence of poor coverage of the sample space; the posterior sample required for accurate computation of the marginal likelihood is much larger than that required to characterize the posterior distribution when us- ing the harmonic mean approximation. In addition, I demonstrate that the integral expression for the harmonic-mean approximation converges slowly at best for high-dimensional problems with uninformative prior distributions. These observations lead to two computationally-modest families of quadrature algorithms that use the full generality sample posterior but without the instability.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • Measure Theory and Probability
    Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure.................
    [Show full text]
  • Chapter 6. Integration §1. Integrals of Nonnegative Functions Let (X, S, Μ
    Chapter 6. Integration §1. Integrals of Nonnegative Functions Let (X, S, µ) be a measure space. We denote by L+ the set of all measurable functions from X to [0, ∞]. + Let φ be a simple function in L . Suppose f(X) = {a1, . , am}. Then φ has the Pm −1 standard representation φ = j=1 ajχEj , where Ej := f ({aj}), j = 1, . , m. We define the integral of φ with respect to µ to be m Z X φ dµ := ajµ(Ej). X j=1 Pm For c ≥ 0, we have cφ = j=1(caj)χEj . It follows that m Z X Z cφ dµ = (caj)µ(Ej) = c φ dµ. X j=1 X Pm Suppose that φ = j=1 ajχEj , where aj ≥ 0 for j = 1, . , m and E1,...,Em are m Pn mutually disjoint measurable sets such that ∪j=1Ej = X. Suppose that ψ = k=1 bkχFk , where bk ≥ 0 for k = 1, . , n and F1,...,Fn are mutually disjoint measurable sets such n that ∪k=1Fk = X. Then we have m n n m X X X X φ = ajχEj ∩Fk and ψ = bkχFk∩Ej . j=1 k=1 k=1 j=1 If φ ≤ ψ, then aj ≤ bk, provided Ej ∩ Fk 6= ∅. Consequently, m m n m n n X X X X X X ajµ(Ej) = ajµ(Ej ∩ Fk) ≤ bkµ(Ej ∩ Fk) = bkµ(Fk). j=1 j=1 k=1 j=1 k=1 k=1 In particular, if φ = ψ, then m n X X ajµ(Ej) = bkµ(Fk). j=1 k=1 In general, if φ ≤ ψ, then m n Z X X Z φ dµ = ajµ(Ej) ≤ bkµ(Fk) = ψ dµ.
    [Show full text]