Delta Functions and Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sobolev Spaces, Theory and Applications
Sobolev spaces, theory and applications Piotr Haj lasz1 Introduction These are the notes that I prepared for the participants of the Summer School in Mathematics in Jyv¨askyl¨a,August, 1998. I thank Pekka Koskela for his kind invitation. This is the second summer course that I delivere in Finland. Last August I delivered a similar course entitled Sobolev spaces and calculus of variations in Helsinki. The subject was similar, so it was not posible to avoid overlapping. However, the overlapping is little. I estimate it as 25%. While preparing the notes I used partially the notes that I prepared for the previous course. Moreover Lectures 9 and 10 are based on the text of my joint work with Pekka Koskela [33]. The notes probably will not cover all the material presented during the course and at the some time not all the material written here will be presented during the School. This is however, not so bad: if some of the results presented on lectures will go beyond the notes, then there will be some reasons to listen the course and at the same time if some of the results will be explained in more details in notes, then it might be worth to look at them. The notes were prepared in hurry and so there are many bugs and they are not complete. Some of the sections and theorems are unfinished. At the end of the notes I enclosed some references together with comments. This section was also prepared in hurry and so probably many of the authors who contributed to the subject were not mentioned. -
Discontinuous Forcing Functions
Math 135A, Winter 2012 Discontinuous forcing functions 1 Preliminaries If f(t) is defined on the interval [0; 1), then its Laplace transform is defined to be Z 1 F (s) = L (f(t)) = e−stf(t) dt; 0 as long as this integral is defined and converges. In particular, if f is of exponential order and is piecewise continuous, the Laplace transform of f(t) will be defined. • f is of exponential order if there are constants M and c so that jf(t)j ≤ Mect: Z 1 Since the integral e−stMect dt converges if s > c, then by a comparison test (like (11.7.2) 0 in Salas-Hille-Etgen), the integral defining the Laplace transform of f(t) will converge. • f is piecewise continuous if over each interval [0; b], f(t) has only finitely many discontinuities, and at each point a in [0; b], both of the limits lim f(t) and lim f(t) t!a− t!a+ exist { they need not be equal, but they must exist. (At the endpoints 0 and b, the appropriate one-sided limits must exist.) 2 Step functions Define u(t) to be the function ( 0 if t < 0; u(t) = 1 if t ≥ 0: Then u(t) is called the step function, or sometimes the Heaviside step function: it jumps from 0 to 1 at t = 0. Note that for any number a > 0, the graph of the function u(t − a) is the same as the graph of u(t), but translated right by a: u(t − a) jumps from 0 to 1 at t = a. -
Notes on Partial Differential Equations John K. Hunter
Notes on Partial Differential Equations John K. Hunter Department of Mathematics, University of California at Davis Contents Chapter 1. Preliminaries 1 1.1. Euclidean space 1 1.2. Spaces of continuous functions 1 1.3. H¨olderspaces 2 1.4. Lp spaces 3 1.5. Compactness 6 1.6. Averages 7 1.7. Convolutions 7 1.8. Derivatives and multi-index notation 8 1.9. Mollifiers 10 1.10. Boundaries of open sets 12 1.11. Change of variables 16 1.12. Divergence theorem 16 Chapter 2. Laplace's equation 19 2.1. Mean value theorem 20 2.2. Derivative estimates and analyticity 23 2.3. Maximum principle 26 2.4. Harnack's inequality 31 2.5. Green's identities 32 2.6. Fundamental solution 33 2.7. The Newtonian potential 34 2.8. Singular integral operators 43 Chapter 3. Sobolev spaces 47 3.1. Weak derivatives 47 3.2. Examples 47 3.3. Distributions 50 3.4. Properties of weak derivatives 53 3.5. Sobolev spaces 56 3.6. Approximation of Sobolev functions 57 3.7. Sobolev embedding: p < n 57 3.8. Sobolev embedding: p > n 66 3.9. Boundary values of Sobolev functions 69 3.10. Compactness results 71 3.11. Sobolev functions on Ω ⊂ Rn 73 3.A. Lipschitz functions 75 3.B. Absolutely continuous functions 76 3.C. Functions of bounded variation 78 3.D. Borel measures on R 80 v vi CONTENTS 3.E. Radon measures on R 82 3.F. Lebesgue-Stieltjes measures 83 3.G. Integration 84 3.H. Summary 86 Chapter 4. -
Elliptic Pdes
viii CHAPTER 4 Elliptic PDEs One of the main advantages of extending the class of solutions of a PDE from classical solutions with continuous derivatives to weak solutions with weak deriva- tives is that it is easier to prove the existence of weak solutions. Having estab- lished the existence of weak solutions, one may then study their properties, such as uniqueness and regularity, and perhaps prove under appropriate assumptions that the weak solutions are, in fact, classical solutions. There is often considerable freedom in how one defines a weak solution of a PDE; for example, the function space to which a solution is required to belong is not given a priori by the PDE itself. Typically, we look for a weak formulation that reduces to the classical formulation under appropriate smoothness assumptions and which is amenable to a mathematical analysis; the notion of solution and the spaces to which solutions belong are dictated by the available estimates and analysis. 4.1. Weak formulation of the Dirichlet problem Let us consider the Dirichlet problem for the Laplacian with homogeneous boundary conditions on a bounded domain Ω in Rn, (4.1) −∆u = f in Ω, (4.2) u =0 on ∂Ω. First, suppose that the boundary of Ω is smooth and u,f : Ω → R are smooth functions. Multiplying (4.1) by a test function φ, integrating the result over Ω, and using the divergence theorem, we get ∞ (4.3) Du · Dφ dx = fφ dx for all φ ∈ Cc (Ω). ZΩ ZΩ The boundary terms vanish because φ = 0 on the boundary. -
Elliptic Pdes
CHAPTER 4 Elliptic PDEs One of the main advantages of extending the class of solutions of a PDE from classical solutions with continuous derivatives to weak solutions with weak deriva- tives is that it is easier to prove the existence of weak solutions. Having estab- lished the existence of weak solutions, one may then study their properties, such as uniqueness and regularity, and perhaps prove under appropriate assumptions that the weak solutions are, in fact, classical solutions. There is often considerable freedom in how one defines a weak solution of a PDE; for example, the function space to which a solution is required to belong is not given a priori by the PDE itself. Typically, we look for a weak formulation that reduces to the classical formulation under appropriate smoothness assumptions and which is amenable to a mathematical analysis; the notion of solution and the spaces to which solutions belong are dictated by the available estimates and analysis. 4.1. Weak formulation of the Dirichlet problem Let us consider the Dirichlet problem for the Laplacian with homogeneous boundary conditions on a bounded domain Ω in Rn, (4.1) −∆u = f in Ω; (4.2) u = 0 on @Ω: First, suppose that the boundary of Ω is smooth and u; f : Ω ! R are smooth functions. Multiplying (4.1) by a test function φ, integrating the result over Ω, and using the divergence theorem, we get Z Z 1 (4.3) Du · Dφ dx = fφ dx for all φ 2 Cc (Ω): Ω Ω The boundary terms vanish because φ = 0 on the boundary. -
On Stochastic Distributions and Currents
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced. -
A Corrective View of Neural Networks: Representation, Memorization and Learning
Proceedings of Machine Learning Research vol 125:1{54, 2020 33rd Annual Conference on Learning Theory A Corrective View of Neural Networks: Representation, Memorization and Learning Guy Bresler [email protected] Department of EECS, MIT Cambridge, MA, USA. Dheeraj Nagaraj [email protected] Department of EECS, MIT Cambridge, MA, USA. Editors: Jacob Abernethy and Shivani Agarwal Abstract We develop a corrective mechanism for neural network approximation: the total avail- able non-linear units are divided into multiple groups and the first group approx- imates the function under consideration, the second approximates the error in ap- proximation produced by the first group and corrects it, the third group approxi- mates the error produced by the first and second groups together and so on. This technique yields several new representation and learning results for neural networks: 1. Two-layer neural networks in the random features regime (RF) can memorize arbi- Rd ~ n trary labels for n arbitrary points in with O( θ4 ) ReLUs, where θ is the minimum distance between two different points. This bound can be shown to be optimal in n up to logarithmic factors. 2. Two-layer neural networks with ReLUs and smoothed ReLUs can represent functions with an error of at most with O(C(a; d)−1=(a+1)) units for a 2 N [ f0g when the function has Θ(ad) bounded derivatives. In certain cases d can be replaced with effective dimension q d. Our results indicate that neural networks with only a single nonlinear layer are surprisingly powerful with regards to representation, and show that in contrast to what is suggested in recent work, depth is not needed in order to represent highly smooth functions. -
Lecture Notes for MATH 592A
Lecture Notes for MATH 592A Vladislav Panferov February 25, 2008 1. Introduction As a motivation for developing the theory let’s consider the following boundary-value problem, u′′ + u = f(x) x Ω=(0, 1) − ∈ u(0) = 0, u(1) = 0, where f is a given (smooth) function. We know that the solution is unique, sat- isfies the stability estimate following from the maximum principle, and it can be expressed explicitly through Green’s function. However, there is another way “to say something about the solution”, quite independent of what we’ve done before. Let’s multuply the differential equation by u and integrate by parts. We get x=1 1 1 u′ u + (u′ 2 + u2) dx = f u dx. − x=0 0 0 h i Z Z The boundary terms vanish because of the boundary conditions. We introduce the following notations 1 1 u 2 = u2 dx (thenorm), and (f,u)= f udx (the inner product). k k Z0 Z0 Then the integral identity above can be written in the short form as u′ 2 + u 2 =(f,u). k k k k Now we notice the following inequality (f,u) 6 f u . (Cauchy-Schwarz) | | k kk k This may be familiar from linear algebra. For a quick proof notice that f + λu 2 = f 2 +2λ(f,u)+ λ2 u 2 0 k k k k k k ≥ 1 for any λ. This expression is a quadratic function in λ which has a minimum for λ = (f,u)/ u 2. Using this value of λ and rearranging the terms we get − k k (f,u)2 6 f 2 u 2. -
SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′. -
Smooth Bumps, a Borel Theorem and Partitions of Smooth Functions on P.C.F. Fractals
SMOOTH BUMPS, A BOREL THEOREM AND PARTITIONS OF SMOOTH FUNCTIONS ON P.C.F. FRACTALS. LUKE G. ROGERS, ROBERT S. STRICHARTZ, AND ALEXANDER TEPLYAEV Abstract. We provide two methods for constructing smooth bump functions and for smoothly cutting off smooth functions on fractals, one using a prob- abilistic approach and sub-Gaussian estimates for the heat operator, and the other using the analytic theory for p.c.f. fractals and a fixed point argument. The heat semigroup (probabilistic) method is applicable to a more general class of metric measure spaces with Laplacian, including certain infinitely ramified fractals, however the cut off technique involves some loss in smoothness. From the analytic approach we establish a Borel theorem for p.c.f. fractals, showing that to any prescribed jet at a junction point there is a smooth function with that jet. As a consequence we prove that on p.c.f. fractals smooth functions may be cut off with no loss of smoothness, and thus can be smoothly decom- posed subordinate to an open cover. The latter result provides a replacement for classical partition of unity arguments in the p.c.f. fractal setting. 1. Introduction Recent years have seen considerable developments in the theory of analysis on certain fractal sets from both probabilistic and analytic viewpoints [1, 14, 26]. In this theory, either a Dirichlet energy form or a diffusion on the fractal is used to construct a weak Laplacian with respect to an appropriate measure, and thereby to define smooth functions. As a result the Laplacian eigenfunctions are well un- derstood, but we have little knowledge of other basic smooth functions except in the case where the fractal is the Sierpinski Gasket [19, 5, 20]. -
Advanced Partial Differential Equations Prof. Dr. Thomas
Advanced Partial Differential Equations Prof. Dr. Thomas Sørensen summer term 2015 Marcel Schaub July 2, 2015 1 Contents 0 Recall PDE 1 & Motivation 3 0.1 Recall PDE 1 . .3 1 Weak derivatives and Sobolev spaces 7 1.1 Sobolev spaces . .8 1.2 Approximation by smooth functions . 11 1.3 Extension of Sobolev functions . 13 1.4 Traces . 15 1.5 Sobolev inequalities . 17 2 Linear 2nd order elliptic PDE 25 2.1 Linear 2nd order elliptic partial differential operators . 25 2.2 Weak solutions . 26 2.3 Existence via Lax-Milgram . 28 2.4 Inhomogeneous bounday value problems . 35 2.5 The space H−1(U) ................................ 36 2.6 Regularity of weak solutions . 39 A Tutorials 58 A.1 Tutorial 1: Review of Integration . 58 A.2 Tutorial 2 . 59 A.3 Tutorial 3: Norms . 61 A.4 Tutorial 4 . 62 A.5 Tutorial 6 (Sheet 7) . 65 A.6 Tutorial 7 . 65 A.7 Tutorial 9 . 67 A.8 Tutorium 11 . 67 B Solutions of the problem sheets 70 B.1 Solution to Sheet 1 . 70 B.2 Solution to Sheet 2 . 71 B.3 Solution to Problem Sheet 3 . 73 B.4 Solution to Problem Sheet 4 . 76 B.5 Solution to Exercise Sheet 5 . 77 B.6 Solution to Exercise Sheet 7 . 81 B.7 Solution to problem sheet 8 . 84 B.8 Solution to Exercise Sheet 9 . 87 2 0 Recall PDE 1 & Motivation 0.1 Recall PDE 1 We mainly studied linear 2nd order equations – specifically, elliptic, parabolic and hyper- bolic equations. Concretely: • The Laplace equation ∆u = 0 (elliptic) • The Poisson equation −∆u = f (elliptic) • The Heat equation ut − ∆u = 0, ut − ∆u = f (parabolic) • The Wave equation utt − ∆u = 0, utt − ∆u = f (hyperbolic) We studied (“main motivation; goal”) well-posedness (à la Hadamard) 1. -
Laplace Transforms: Theory, Problems, and Solutions
Laplace Transforms: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 43 The Laplace Transform: Basic Definitions and Results 3 44 Further Studies of Laplace Transform 15 45 The Laplace Transform and the Method of Partial Fractions 28 46 Laplace Transforms of Periodic Functions 35 47 Convolution Integrals 45 48 The Dirac Delta Function and Impulse Response 53 49 Solving Systems of Differential Equations Using Laplace Trans- form 61 50 Solutions to Problems 68 2 43 The Laplace Transform: Basic Definitions and Results Laplace transform is yet another operational tool for solving constant coeffi- cients linear differential equations. The process of solution consists of three main steps: • The given \hard" problem is transformed into a \simple" equation. • This simple equation is solved by purely algebraic manipulations. • The solution of the simple equation is transformed back to obtain the so- lution of the given problem. In this way the Laplace transformation reduces the problem of solving a dif- ferential equation to an algebraic problem. The third step is made easier by tables, whose role is similar to that of integral tables in integration. The above procedure can be summarized by Figure 43.1 Figure 43.1 In this section we introduce the concept of Laplace transform and discuss some of its properties. The Laplace transform is defined in the following way. Let f(t) be defined for t ≥ 0: Then the Laplace transform of f; which is denoted by L[f(t)] or by F (s), is defined by the following equation Z T Z 1 L[f(t)] = F (s) = lim f(t)e−stdt = f(t)e−stdt T !1 0 0 The integral which defined a Laplace transform is an improper integral.