Ocorrência De Spirobranchus Giganteus (Polychaeta, Serpulidae)

Total Page:16

File Type:pdf, Size:1020Kb

Ocorrência De Spirobranchus Giganteus (Polychaeta, Serpulidae) First record of Spirobranchus giganteus (Pallas, 1766) (Polychaeta, Serpulidae) on Southeastern Brazillian coast: new biofouler and free to live without corals? * LUÍS F. SKINNER , ARTHUR A. TENÓRIO, FÁBIO L. PENHA & DÉBORA C.SOARES Universidade do Estado do Rio de Janeiro, Laboratório de Ecologia e Dinâmica Bêntica Marinha. Rua Francisco Portela 1470, sala 172, Patronato, São Gonçalo, RJ, Brazil. 24435-00. *Corresponding author:[email protected] Abstract. The serpulid Spirobranchus giganteus is recorded by first time at Arraial do Cabo, Southeastern Brazilian coast, with two important observations of its biology and dispersal: is the first time that this species is recorded living without coral association and the possibility to disperse and colonize new areas as part of biofouling. Until the present, we do not know if this species will spread or disappear in the region, so monitoring dives are needed to follow its distribution. Keywords: christmas tree worm, tubeworms, marine fouling, introduced species, marine activities Resumo: Primeiro registro de Spirobranchus giganteus (Pallas, 1766) (Polychaeta, Serpulidae) na costa sudeste do Brasil: novo bioincrustante e live para viver sem corais?. O serpulídeo Spirobranchus giganteus é registrado pela primeira vez em Arraial do Cabo, na costa sudeste brasileira, com dois registros importantes de sua biologia e dispersão: é a primeira vez que esta espécie é observada vivendo sem a associação com corais e a possibilidade de dispersão e colonização de novas áreas como parte da bioincrustação. Até o momento, não sabemos se esta espécie irá se espalhar ou desaparecer na região, então mergulhos de monitoramento são necessários para acompanhar sua distribuição. Palavras chave: verme-árvore-de-natal, poliqueto tubícola, incrustação marinha, espécies introduzidas, atividades marítimas Introduction and oil platforms hulls, ballast water and Polychaetes included in Sabellida clade are aquaculture. Recent studies worldwide put hull represented by two families: Sabellidae Latreille, fouling as an important, current and ongoing vector 1825 and Serpulidae Rafinesque, 1825. They are for species translocation (Gollasch 2002, Lewis et easily recognized by the anterior branchial crown al. 2006, Tovar-Hernandez et al. 2009). Dispersion and also by a distinct thoracic and abdominal of many serpulid species has been reported from regions. These groups are easiest distinguishable tropical and subtropical harbors in all oceans, and among then: Serpulidae are tubeworms whose tubes related to this vector (Schwindt & Iribarne 1998, are calcareous and Sabellidae are tubeworms with Lewis et al. 2006, Bingham 2008, Tovar-Hernández tube made by sediment and mucous (Kupriyanova & et al. 2009). Rouse 2008, ten Hove & Kupriyanova 2009). These The Christmas Tree Worm Spirobranchus families are two of the most important polychaetes giganteus (Pallas, 1766) (Figure 1) is a tropical from benthic hard substrata, mainly on fouling calcareous tubeworm, commonly associated to communities (Bastida-Zavala 2008, Tovar- several coral species (Hunte et al. 1990), and Hernandez et al. 2009). belongs to a complex-species (Fiege & ten Hove Marine fouling species are subjected to be 1999). Many papers described its distribution as transported among biogeographical regions by ships obligatory associated to live corals (Marsden et al. Pan-American Journal of Aquatic Sciences (2012), 7(3): 117-124 118 L. SKINNER ET AL. 1990, Ben-Tzvi et al. 2006, Floros et al. 2005, early age) and produces a large number of very Petitjean & Myers 2005). They could live for 18-20 small offspring (Nishi & Nishihira 1996). years, and mature at a small size (and presumably A B 1 cm 1 cm D C 1 cm 1 mm Figure 1. Spirobranchus giganteus collected from Buoy, at Arraial do Cabo..Pictures shows the typical radiolar crown, some color variation and lateral view of operculum (A and B). Detail of operculum (D) 20X. Distance between bars= 1mm. Photo by L.F. Skinner The first record of S. giganteus from Brazil Grande do Norte (RN) by Amaral et al. (2006). was by Quatrefagues 1865, as Cymospira megasoma The purpose of this paper is to describe the and Cymospira rubus from ―le Brésil‖ and from first occurrence of S. giganteus at Arraial do Cabo, ―Bahia‖ (sensu ten Hove 1970); Zibrowius (1970) on Brazilian southeastern coast, 650 km away of its recorded S. giganteus from Fernando de Noronha. previous southernmost record, to record its Paiva (2006a, 2006b) reports the occurrence of this association to artificial substrata, not to coral species species in Abrolhos reef bank on sedimentary as described on literature and also, the transference bottom samples, probably eroded from the reefs. between artificial substrates. Also, S. giganteus is recorded from the coast of Rio Pan-American Journal of Aquatic Sciences (2012), 7(3): 117-124 Spirobranchus giganteus on Southeastern Brazilian coast 119 Methods region. Mean water temperature at Anjos Bay is 22.5 Study area. The study area was inside Forno oC (Guimaraens & Coutinho, 2000). The presence of harbor, at Arraial do Cabo (22°58'22.13"S, 42° some individuals that recruited on breakwater, closer 0'49.69"W) (Figure 2). This harbor previously to the buoy, represents its introduction on region, operates in salt transfer from NE coast of Brazil but and is based on three aspects: firstly, the absence of since 90’s years, support activities to oil industry any previously register, even photographic, of this have increased and also traffic of ships and wonderful species (Song 2006) on region, and platforms to this region. Many exotic species were Arraial do Cabo is the most visited dive site on detected in these years like sponges Paraleucilla Brazil. Secondly, the presence of many individuals magna (Klautau et al. 2004) soft and azooxanthelate on decommissioned oil buoy hull (pers. obs.) and corals like Chromonephthea braziliensis (previously third, its occurrence only inside harbor area, site identified as Stereonephthya aff. Curvata) and favorable to species introduction (Cohen et al. 2005, Tubastrea coccinea (Ferreira 2005, Fleury et al. Lopes 2009). Previous records include Fernando de 2005), the bivalve Isognomom bicolor (López et al. Noronha Island, Atol das Rocas and Abrolhos bank 2010), the sabellid polychaete Branchiomma (Figure 2). Despite Cabo Frio region be recognized luctuosum (Costa-Paiva 2006) among others (Lopes as southern limit for many endemic coral species 2009). Many of these introductions have been (Laborel 1970, Lins de Barros et al. 2003), mean associated to this increase on ship traffic. The main water temperature is few (circa 2-3) degrees below available substrata for fouling organisms on harbor mean water temperature on northeastern coast and area are the breakwater, formed by large granite corals could not form a reef, but grow over natural boulders, and the pillars of the pier, besides five rocks (Lins de Barros et al. 2003). decommissioned buoys. These buoys has 15m in But, besides the introduction, two additional diameter and 5m deep and its hull is replenished aspects are very relevant. The first one is the with fouling species, many of them exotic (Coutinho possibility of S. giganteus colonizes, be transported 2009). and transferred as fouling species between different We collected the first two individuals of S. regions. Carrerette (2010) also detected new records giganteus on July 2009 from one buoy hull. After of S. giganteus, both on natural and artificial taxonomic confirmation, two more individuals were substrates at Sepetiba bay, Rio de Janeiro. Like collected on buoy and dissected, and we could Arraial do Cabo, these records are performed in an record the presence of eggs inside body segments. harbor area. These observations at two different bays This indicates that they are reproducing in the region could indicate that S. giganteus is being transferred and lead us to look for its presence on available on Brazilian coast among regions as biofouling natural or artificial substrata. From July 2009 up to species. Other possibilities, less supported by our October 2010, we performed 10 scuba dives to data are larval transport by ballast water or range search and mappping S. giganteus distribution in expansion due to global climate change. associations with massive zooxanthelate coral Sabellidae and Serpulidae develops both on species (Mussismilia hispida, Siderastrea stellata) natural and artificial substrata (Bastida-Zavala 2008, and azooxanthelate coral species (Tubastrea spp). Tovar-Hernandez et al. 2009) and among Other coral species at the study region are Madracis Serpulidae, excluding Spirorbinae, 18 of 350 species decactis, Phyllangia americana and the hydrocoral are described as exotic or cryptogenic (Link et al. Millepora alcicornis (Laborel 1970), but they are 2009; ten Hove & Kupriyanova 2009). Serpulidae not found inside harbor. During these dives, we dispersion has been well documented and registered recorded the presence of three individuals at in many places and being associated to fouling on breakwater and two more at buoy. All individuals ship hulls (Schwindt & Iribarne 1998, Schwindt et collected were found on shallow waters, up to 3 m al. 2001, Lewis et al. 2006, Bingham 2008, Tovar- deep. Also, the individuals collected from Hernández et al. 2009). Species translocation among breakwater were located very close to buoy, in biogeographical regions has been associated to distances up to 5 m. Specimens were deposited at several sources, and navigation is now recognized
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae)
    ISSN 0083-7903, 68 (Print) ISSN 2538-1016; 68 (Online) The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae) by PETER J. VINE ANOGlf -1,. �" ii 'i ,;.1, J . --=--� • ��b, S�• 1 • New Zealand Oceanographic Institute Memoir No. 68 1977 The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Frontispiece Spirorbinae on a piece of alga washed up on the New Zealand seashore. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) by PETER J. VINE Department of Zoology, University College, Singleton Park, Swansea, Wales, UK and School of Biological Sciences, James Cook University of North Queensland, Townsville, Australia PERMANENT ADDRESS "Coe! na Mara", Faul, c/- Dr Casey, Clifden, County Galway, Ireland New Zealand Oceanographic Institute Memoir No. 68 1977 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World list of Scientific Periodicals (4th edition: Mem. N.Z. oceanogr. Inst. 68 ISSN 0083-7903 Received for publication at NZOI January 1973 Edited by T. K. Crosby, Science InformationDivision, DSIR and R.
    [Show full text]
  • Zool({)Jgic/Ffll :§!L[Lj}Djj(F)§
    Zoological Studies 34(2): 117-125 (1995) Zool({)JgiC/ffll :§!l[lJ}dJj(f)§ Distribution of Spirobranchus giganteus cornicuiatus (Hove) on the Coral Reefs of Southern Taiwan Chang-Feng Dai* and Hsiao-Pei Yang Institute of Oceanography, National Taiwan University, Taipei, Taiwan 106, R.O.C. (Accepted February 27, 1995) Chang-Feng Dai and Hsiao-Pei Yang (1995) Distribution of Spirobranchus giganteus corniculatus (Hove) on the coral reefs of southern Taiwan. Zoological Studies 34(2): 117-125. The distribution of Spirobranchus giganteus corniculatus (Hove), a widely distributed tube-building serpulid, on the coral reefs of southern Taiwan was studied by the transect sampling method. Two reef sites in Nanwan Bay, one with a high degree of physical disturbance and the other with a lower degree of disturbance, were surveyed. The spatial distri­ bution of S. giganteus corniculatus on coral colonies was also analyzed using distance to nearest neighbor. The results show that S. giganteus corniculatus is distributed nonrandomly among coral species. Four species, Porites tutee, P. lobete, P. lichen, Montipora informis, are frequently colonized by the worm. About 30 species are occasionally colonized and many coral species are not colonized. Coral species which are frequently colonized by the worm are competitively subordinate. The spatial distribution of S. giganteus corniculatus on a coral colony is related to the number of worms with a tendency toward clustering with in­ creasing number of worms per colony. In addition, most worms were found at intermediate depths (6-17 rn) where the reef surface was flat and there were more colonizable scleractinians. The distribution and abun­ dance of S.
    [Show full text]
  • Filogranula Cincta (Goldfuss, 1831), a Serpulid Worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin
    SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 71 • 2015 • čís. 3–4 • s. 293–300 Series B – Historia Naturalis • vol. 71 • 2015 • no. 3–4 • pp. 293–300 FILOGRANULA CINCTA (GOLDFUSS, 1831), A SERPULID WORM (POLYCHAETA, SEDENTARIA, SERPULIDAE) FROM THE BOHEMIAN CRETACEOUS BASIN TOMÁŠ KOČÍ Department of Palaeontology, Natural History Museum, National Museum, Václavské náměstí 68, 115 79 Praha 1, the Czech Republic; Ivančická 581, Praha 9 – Letňany 199 00, the Czech Republic; e-mail: [email protected] MANFRED JÄGER Lindenstrasse 53, D-72348 Rosenfeld, Germany; e-mail: [email protected] Kočí, T., Jäger, M. (2015): Filogranula cincta (GOLDFUSS, 1831), a serpulid worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin. – Acta Mus. Nat. Pragae, Ser. B Hist. Nat., 71(3-4): 293–300, Praha. ISSN 1804-6479. Abstract. Tubes of the serpulid worm Filogranula cincta (GOLDFUSS, 1831) were found in several rocky coast facies and other nearshore / shallow water localities in the Bohemian Cretaceous Basin ranging in geological age from the Late Cenomanian to the Late Turonian. A mor - phological description, discussion regarding systematics and taxonomy and notes on palaeoecology and stratigraphy are presented. ■ Late Cretaceous, Polychaeta, Filogranula, Serpulidae, Palaeoecology Received April 24, 2015 Issued December, 2015 Introduction any Filogranula cincta specimen. It seems that, apart from the vague mention from Strehlen by Wegner (1913), for more Filogranula cincta (GOLDFUSS, 1831) is a small and than a hundred years no additional finds of Filogranula inconspicuous but nevertheless common serpulid species in cincta from the BCB had been published until the present the Bohemian Cretaceous Basin (BCB).
    [Show full text]
  • Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H
    Deepwater Tube Worms (Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H. BAILEy-BROCK2 THREE SERPULID TUBE WORMS have been dis­ (1906), but no serpulids were found. Hart­ covered on shells and coral fragments taken in man (1966a) reviewed the literature in an dredges from around the Hawaiian Islands. The extensive analysis of the Hawaiian polychaete two serpulines Spirobranchus latiscapus Maren­ fauna. Straughan (1969), presented a more zeller and Vermiliopsis infundibulum Philippi recent survey of the littoral and upper sublit­ are new records for the islands. However, the toral Serpulidae. Other works by Vine (1972) small spirorbid Pileolaria (Duplicaria) dales­ and Vine, Bailey-Brock, and Straughan (1972) traughanae Vine has been described previously include ecological data collected from settle­ from within diving depths (Vine, 1972), but ment plates and by diving, but no records ex­ it is absent from shoal waters and intertidal re­ tend below 28 meters. Serpulids have been gions. 3 The occurrence of this species in the described from deepwater collections in other dredged collections indicates an extensive depth parts of the world. Southward (1963) found range in the Hawaiian Islands. 14 species of calcareous tube worms on hard The tube worms were obtained from col­ substrata dredged from depths as great as 1,755 lections taken during two separate oceano­ meters along the continental shelf off south­ graphic investigations in Hawaiian waters. western Britain. Antarctic collections yielded 14 Material consisting mostly of the pink serpuline genera and more than 23 species from depths Spirobranchus latiscapus was loaned by Dr. E. C. ranging from the littoral zone down to 4,930­ Jones of the National Marine Fisheries Service 4,963 meters in the South Sandwich Trench (N.M.F.S.) and was taken from an average (Hartman, 1966b, 1967).
    [Show full text]
  • SEASMART Program Final Report Annex
    Creating a Sustainable, Equitable & Affordable Marine Aquarium Industry in Papua New Guinea | 1 Table of Contents Executive Summary ............................................................................................................ 7 Introduction ....................................................................................................................... 15 Contract Deliverables ........................................................................................................ 21 Overview of PNG in the Marine Aquarium Trade ............................................................. 23 History of the Global Marine Aquarium Trade & PNG ............................................ 23 Extent of the Global Marine Aquarium Trade .......................................................... 25 Brief History of Two Other Coastal Fisheries in PNG ............................................ 25 Destructive Potential of an Inequitable, Poorly Monitored & Managed Nature of the Trade Marine Aquarium Fishery in PNG ........................... 26 Benefit Potential of a Well Monitored & Branded Marine Aquarium Trade (and Other Artisanal Fisheries) in PNG ................................................................... 27 PNG Way to Best Business Practice & the Need for Effective Branding .............. 29 Economic & Environmental Benefits....................................................................... 30 Competitive Advantages of PNG in the Marine Aquarium Trade ................................... 32 Pristine Marine
    [Show full text]
  • The Distribution and Unexpected Genetic Diversity of the Non-Indigenous Annelid Ficopomatus Enigmaticus in California
    Aquatic Invasions (2019) Volume 14, Issue 2: 250–266 CORRECTED PROOF Research Article The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California Alison Yee1, Joshua Mackie2 and Bruno Pernet1,* 1Department of Biological Sciences, California State University Long Beach,1250 Bellflower Blvd, Long Beach, CA 90840, USA 2Gilmac P/L, Suite G04, 1 Havelock Street, West Perth 6005, Australia Author e-mails: [email protected] (AY), [email protected] (JM), [email protected] (BP) *Corresponding author Citation: Yee A, Mackie J, Pernet B (2019) The distribution and unexpected Abstract genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in The non-indigenous annelid Ficopomatus enigmaticus has been established in San California. Aquatic Invasions 14(2): 250– Francisco Bay since at least 1921, but in the past 30 years it has also been found in 266, https://doi.org/10.3391/ai.2019.14.2.06 other parts of California. In the summer of 2017 we surveyed 136 sites to determine Received: 25 October 2018 its current distribution in the state. We found F. enigmaticus at 23 sites ranging Accepted: 23 January 2019 from San Francisco Bay in the north to Newport Bay in the south. Populations were concentrated in four regions: San Francisco Bay, Monterey Bay, Santa Barbara, and Published: 29 March 2019 sites in Los Angeles and Orange Counties. Presence sites did not differ systematically Handling editor: Maiju Lehtiniemi in salinity or temperature from absence sites, but all presence sites appeared to have Thematic editor: Charles W. Martin restricted exchange of water with nearby oceanic habitats.
    [Show full text]
  • Northwestern Hawaiian Islands/Kure Atoll Assessment and Monitoring Program
    Northwestern Hawaiian Islands/Kure Atoll Assessment and Monitoring Program Final Report March 2002 Grant Number NA070A0457 William j. Walsh1, Ryan Okano2, Robert Nishimoto1, Brent Carman1. 1 Division of Aquatic Resources 1151 Punchbowl Street Rm. 330 Honolulu, HI 96813 2 Botany Department University of Hawai`i Mānoa Honolulu, HI 96822 2 INTRODUCTION The Northwest Hawaiian Islands (NWHI) consist of 9,124 km2 of land and approximately 13,000 km2 of coral reef habitat. They comprise 70% of all coral reef areas under U.S. jurisdiction. This isolated archipelago of small islands, atolls, reefs and banks represent a unique and largely pristine coral reef ecosystem. The islands support millions of nesting seabirds and are breeding grounds for the critically endangered Hawaiian monk seal and threatened green sea turtle. The reefs include a wide range of habitats and support a diverse assemblage of indigenous and endemic reef species, many of which have yet to be described. Kure Atoll, located at the northwestern end of the NWHI chain (approximately 28º 25’ N latitude and 178º 20’ W longitude) is the northernmost atoll in the world. The atoll is located 91 km northwest of Midway Islands and nearly 1,958 km northwest of Honolulu. It is a nearly circular atoll with a diameter of 10 km (6mi). The outer reef is continuous Figure 1. IKONOS satellite image of Kure Atoll 3 and almost encircles the atoll’s lagoon except for passages to the southwest (Fig. 1). An emergent rock ledge consisting primarily of coralline algae and algally bound and encrusted coral is present along some sections of the reef crest.
    [Show full text]
  • Ascidian News #82 December 2018
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 82 December 2018 A big thank-you to all who sent in contributions. There are 85 New Publications listed at the end of this issue. Please continue to send me articles, and your new papers, to be included in the June 2019 issue of AN. It’s never too soon to plan ahead. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. From Stefano Tiozzo ([email protected]) and Remi Dumollard ([email protected]): The 10th Intl. Tunicata Meeting will be held at the citadel of Saint Helme in Villefranche sur Mer (France), 8- 12 July 2019. The web site with all the information will be soon available, save the date! We are looking forward to seeing you here in the Riviera. A bientôt! Remi and Stefano 2. The 10th Intl. Conference on Marine Bioinvasions was held in Puerto Madryn, Patagonia, Argentina, October 16-18. At the conference website (http://www.marinebioinvasions.info/index) the program and abstracts in pdf can be downloaded. Dr. Rosana Rocha presented one of the keynote talks: "Ascidians in the anthropocene - invasions waiting to happen". See below under Meetings Abstracts for all the ascidian abstracts; my thanks to Evangelina Schwindt for compiling them. The next (11th) meeting will be in Annapolis, Maryland, organized by Greg Ruiz, Smithsonian Invasions lab, date to be determined. 3. Conference proceedings of the May 2018 Invasive Sea Squirt Conference will be peer reviewed and published in a special issue of the REABIC journal Management of Biological Invasions.
    [Show full text]