Organic Aerosol from the Oxidation of Biogenic Organic Compounds: a Modelling Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wannier90 As a Community Code: New
IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 32 (2020) 165902 (25pp) https://doi.org/10.1088/1361-648X/ab51ff 32 Wannier90 as a community code: new 2020 features and applications © 2020 IOP Publishing Ltd Giovanni Pizzi1,29,30 , Valerio Vitale2,3,29 , Ryotaro Arita4,5 , Stefan Bl gel6 , Frank Freimuth6 , Guillaume G ranton6 , JCOMEL ü é Marco Gibertini1,7 , Dominik Gresch8 , Charles Johnson9 , Takashi Koretsune10,11 , Julen Ibañez-Azpiroz12 , Hyungjun Lee13,14 , 165902 Jae-Mo Lihm15 , Daniel Marchand16 , Antimo Marrazzo1 , Yuriy Mokrousov6,17 , Jamal I Mustafa18 , Yoshiro Nohara19 , 4 20 21 G Pizzi et al Yusuke Nomura , Lorenzo Paulatto , Samuel Poncé , Thomas Ponweiser22 , Junfeng Qiao23 , Florian Thöle24 , Stepan S Tsirkin12,25 , Małgorzata Wierzbowska26 , Nicola Marzari1,29 , Wannier90 as a community code: new features and applications David Vanderbilt27,29 , Ivo Souza12,28,29 , Arash A Mostofi3,29 and Jonathan R Yates21,29 Printed in the UK 1 Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 CM Lausanne, Switzerland 2 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10.1088/1361-648X/ab51ff 3 Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom 4 RIKEN -
Accelerating Molecular Docking by Parallelized Heterogeneous Computing – a Case Study of Performance, Quality of Results
solis vasquez, leonardo ACCELERATINGMOLECULARDOCKINGBY PARALLELIZEDHETEROGENEOUSCOMPUTING–A CASESTUDYOFPERFORMANCE,QUALITYOF RESULTS,ANDENERGY-EFFICIENCYUSINGCPUS, GPUS,ANDFPGAS Printed and/or published with the support of the German Academic Exchange Service (DAAD). ACCELERATINGMOLECULARDOCKINGBYPARALLELIZED HETEROGENEOUSCOMPUTING–ACASESTUDYOF PERFORMANCE,QUALITYOFRESULTS,AND ENERGY-EFFICIENCYUSINGCPUS,GPUS,ANDFPGAS at the Computer Science Department of the Technische Universität Darmstadt submitted in fulfilment of the requirements for the degree of Doctor of Engineering (Dr.-Ing.) Doctoral thesis by Solis Vasquez, Leonardo from Lima, Peru Reviewers Prof. Dr.-Ing. Andreas Koch Prof. Dr. Christian Plessl Date of the oral exam October 14, 2019 Darmstadt, 2019 D 17 Solis Vasquez, Leonardo: Accelerating Molecular Docking by Parallelized Heterogeneous Computing – A Case Study of Performance, Quality of Re- sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs Darmstadt, Technische Universität Darmstadt Date of the oral exam: October 14, 2019 Please cite this work as: URN: urn:nbn:de:tuda-tuprints-92886 URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288 This document is provided by TUprints, The Publication Service of the Technische Universität Darmstadt https://tuprints.ulb.tu-darmstadt.de This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 In- ternational” license. ERKLÄRUNGENLAUTPROMOTIONSORDNUNG §8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Disserta- tion mit der schriftlichen Version übereinstimmt. §8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen. §9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde. -
The Oxidation of Secondary Alcohols by Dimethyldioxirane: Re-Examination of Kinetic Isotope Effects
Heterocycl. Commun., Vol. 16(4-6), pp. 217–220, 2010 • Copyright © by Walter de Gruyter • Berlin • New York. DOI 10.1515/HC.2010.016 Preliminary Communication The oxidation of secondary alcohols by dimethyldioxirane: re-examination of kinetic isotope effects A lfons L. Baumstark *, P edro C. Vasquez, Mark 1991 ; Denmark and Wu , 1998 ; Frohn et al. , 1998 ) or in an Cunningham a and Pamela M. Leggett-Robinson b isolated solution (Murray and Jeyaraman , 1985 ; Baumstark and McCloskey , 1987 ). The epoxidation of alkenes and het- Department of Chemistry , Center for Biotech and Drug eroatom oxidation by isolated solutions of 1 in acetone have Design, Georgia State University, Atlanta, Georgia been extensively investigated (Murray and Jeyaraman , 1985 ; 30302-4098 , USA Baumstark and McCloskey , 1987 ; Baumstark and Vasquez , * Corresponding author 1988 ; Winkeljohn et al. , 2004 , 2007 ). Dioxiranes can also e-mail: [email protected] insert oxygen into unactivated CH bonds of alkanes (Murray et al. , 1986 ). However, this important reaction generally requires a dioxirane more reactive than dimethyldioxirane to Abstract be of utility (Kuck et al. , 1994 ; D ’ Accolti et al., 2003 ). The oxidation of secondary alcohols by dimethyldioxirane, 1 , to The kinetic isotope effects for the oxidation of a series of ketones can be achieved in high yield under mild conditions deuterated isopropanols and α -trideuteromethyl benzyl alco- and with convenient reaction times (Kovac and Baumstark , hol by dimethyldioxirane ( 1 ) to the corresponding ketones 1994 ; Cunningham et al. , 1998; Baumstark, 1999 ). Two were determined in dried acetone at 23 ° C. A primary kinetic mechanistic extremes have been proposed for secondary alco- isotope effect (PKIE) of 5.2 for the oxidation of isopropyl- hol oxidation by 1 : a) concerted insertion (Mello et al. -
Universid Ade De Sã O Pa
A hardware/software codesign for the chemical reactivity of BRAMS Carlos Alberto Oliveira de Souza Junior Dissertação de Mestrado do Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional (PPG-CCMC) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Carlos Alberto Oliveira de Souza Junior A hardware/software codesign for the chemical reactivity of BRAMS Master dissertation submitted to the Instituto de Ciências Matemáticas e de Computação – ICMC- USP, in partial fulfillment of the requirements for the degree of the Master Program in Computer Science and Computational Mathematics. FINAL VERSION Concentration Area: Computer Science and Computational Mathematics Advisor: Prof. Dr. Eduardo Marques USP – São Carlos August 2017 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados fornecidos pelo(a) autor(a) Souza Junior, Carlos Alberto Oliveira de S684h A hardware/software codesign for the chemical reactivity of BRAMS / Carlos Alberto Oliveira de Souza Junior; orientador Eduardo Marques. -- São Carlos, 2017. 109 p. Dissertação (Mestrado - Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2017. 1. Hardware. 2. FPGA. 3. OpenCL. 4. Codesign. 5. Heterogeneous-computing. I. Marques, Eduardo, orient. II. Título. Carlos Alberto Oliveira de Souza Junior Um coprojeto de hardware/software para a reatividade química do BRAMS Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Ciências de Computação e Matemática Computacional. -
Estimating the Densities of Benzene-Derived Explosives Using Atomic Volumes
Journal of Molecular Modeling (2018) 24: 50 https://doi.org/10.1007/s00894-018-3588-9 ORIGINAL PAPER Estimating the densities of benzene-derived explosives using atomic volumes Vikas D. Ghule1 & Ayushi Nirwan1 & Alka Devi1 Received: 7 November 2017 /Accepted: 8 January 2018 /Published online: 9 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula CaHbNcOd is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0–3% for 54 compounds, 3–5% for 12 compounds, and 5–8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0–3% for 25 compounds, 3–5% for 13 compounds, and 5–7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three –NH2 or –OH groups. Overall, the present approach for estimating the densities of benzene- derived explosives with different functional groups was found to be reliable. Keywords Density . Atomic volume . Explosive . Group additivity method . Energetic salts Introduction providing that the density and heat of formation values fed into the formula are reliable. The synthesis or hypothetical design of new explosive com- The purpose of the work reported in the present paper was to pounds requires the evaluation of various molecular and energet- develop a simple and straightforward correlation for predicting ic properties in order to select promising molecules. -
A Thiocyanopalladation/Carbocyclization Transformation Identified Through Enzymatic Screening
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A thiocyanopalladation/carbocyclization transformation identified through enzymatic Cite this: Chem. Sci.,2017,8,8050 screening: stereocontrolled tandem C–SCN and C–C bond formation† G. Malik,‡ R. A. Swyka,‡ V. K. Tiwari, X. Fei, G. A. Applegate and D. B. Berkowitz * Herein we describe a formal thiocyanopalladation/carbocyclization transformation and its parametrization and optimization using a new elevated temperature plate-based version of our visual colorimetric enzymatic screening method for reaction discovery. The carbocyclization step leads to C–SCN bond formation in tandem with C–C bond construction and is highly stereoselective, showing nearly absolute 1,2-anti-stereoinduction (5 examples) for substrates bearing allylic substitution, and nearly absolute 1,3- syn-stereoinduction (16 examples) for substrates bearing propargylic substitution. Based upon these high levels of stereoinduction, the dependence of the 1,2-stereoinduction upon cyclization substrate Creative Commons Attribution-NonCommercial 3.0 Unported Licence. geometry, and the generally high preference for the transoid vinyl thiocyanate alkene geometry, a mechanistic model is proposed, involving (i) Pd(II)-enyne coordination, (ii) thiocyanopalladation, (iii) migratory insertion and (iv) b-elimination. Examples of transition metal-mediated C–SCN bond formation that proceed smoothly on unactivated substrates and allow for preservation of the SCN moiety are lacking. Yet, the thiocyanate functionality -
Nitrogen Oxides in the Troposphere – What Have We Learned from Satellite Measurements?
Eur. Phys. J. Conferences 1, 149–156 (2009) © EDP Sciences, 2009 THE EUROPEAN DOI: 10.1140/epjconf/e2009-00916-9 PHYSICAL JOURNAL CONFERENCES Nitrogen oxides in the troposphere – What have we learned from satellite measurements? A. Richtera Institute of Environmental Physics, University of Bremen, 28359 Bremen, Germany Abstract. Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2, some examples of typical applications and an outlook on future prospects. 1 NOx in the troposphere Nitrogen oxides play several important roles in the atmosphere. In the stratosphere, they act as catalysts in ozone destruction reducing ozone levels and at the same time form reservoir substances with the halogen oxides thereby reducing their ozone depletion potential. In the troposphere, photolysis of NO2 is the only known route for ozone formation. As ozone is also rapidly destroyed by reaction with NO, nitrogen oxides (NOx =NO+NO2)and ozone are often in photochemical equilibrium in the troposphere. In the presence of HO2 or peroxy radicals (RO2), NO2 is reformed without destruction of an ozone molecule leading to accumulating of O3. Thereby, high levels of NOx together with volatile organic compounds and sufficient illumination lead to photochemical smog. -
Toxicological Profile for Acetone Draft for Public Comment
ACETONE 1 Toxicological Profile for Acetone Draft for Public Comment July 2021 ***DRAFT FOR PUBLIC COMMENT*** ACETONE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** ACETONE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. -
Global Modeling of the Nitrate Radical (NO3)Forpresentand Pre-Industrial Scenarios
Atmospheric Research 164–165 (2015) 347–357 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos Global modeling of the nitrate radical (NO3)forpresentand pre-industrial scenarios M.A.H. Khan a,M.C.Cookea,1, S.R. Utembe a,2, A.T. Archibald a,3,R.G.Derwentb,P.Xiaoa,C.J.Percivalc, M.E. Jenkin d, W.C. Morris a, D.E. Shallcross a,⁎ a Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK b rdscientific, Newbury, Berkshire, UK c The Centre for Atmospheric Science, The School of Earth, Atmospheric and Environmental Science, The University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL, UK d Atmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK article info abstract Article history: Increasing the complexity of the chemistry scheme in the global chemistry transport model STOCHEM to STOCHEM- Received 23 February 2015 CRI (Utembe et al., 2010) leads to an increase in NOx as well as ozone resulting in higher NO3 production over Received in revised form 26 May 2015 forested regions and regions impacted by anthropogenic emission. Peak NO3 is located over the continents near Accepted 8 June 2015 NO emission sources. NO is formed in the main by the reaction of NO with O ,andthesignificant losses of NO Available online 14 June 2015 x 3 2 3 3 are due to the photolysis and the reactions with NO and VOCs. Isoprene is an important biogenic VOC, and the possibility of HO recycling via isoprene chemistry and other mechanisms such as the reaction of RO with HO Keywords: x 2 2 STOCHEM-CRI has been investigated previously (Archibald et al., 2010a). -
Butyraldehyde Casrn: 123-72-8 Unii: H21352682a
BUTYRALDEHYDE CASRN: 123-72-8 UNII: H21352682A FULL RECORD DISPLAY Displays all fields in the record. For other data, click on the Table of Contents Human Health Effects: Human Toxicity Excerpts: /HUMAN EXPOSURE STUDIES/ Three Asian subjects who reported experiencing severe facial flushing in response to ethanol ingestion were subjects of patch testing to aliphatic alcohols and aldehydes. An aqueous suspension of 75% (v/v) of each alcohol and aldehyde was prepared and 25 uL was used to saturate ashless grade filter paper squares which were then placed on the forearm of each subject. Patches were covered with Parafilm and left in place for 5 minutes when the patches were removed and the area gently blotted. Sites showing erythema during the next 60 minutes were considered positive. All three subjects displayed positive responses to ethyl, propyl, butyl, and pentyl alcohols. Intense positive reactions, with variable amounts of edema, were observed for all the aldehydes tested (valeraldehyde as well as acetaldehyde, propionaldehyde, and butyraldehyde). [United Nations Environment Programme: Screening Information Data Sheets on n-Valeraldehyde (110-62-3) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** [United Nations Environment Programme: Screening Information Data Sheets on nValeraldehyde (110623) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** /SIGNS AND SYMPTOMS/ May act as irritant, /SRP: CNS depressant/ ...[Budavari, S. (ed.). The Merck Index - Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ: Merck and Co., Inc., 1989., p. -
Sterically Demanding Oxidative Amidation of -Substituted Malononitriles with Amines Using O2** Jing Li, Martin J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Lincoln Institutional Repository Oxidative Amidation DOI: 10.1002/anie.201((will be filled in by the editorial staff)) Sterically Demanding Oxidative Amidation of -Substituted Malononitriles with Amines using O2** Jing Li, Martin J. Lear,* and Yujiro Hayashi* Abstract: An efficient amidation method between readily available dicyanoalkanes to make hindered amides and peptides in high yield 1,1-dicyanoalkanes and chiral or non-chiral amines was realized and stereochemical integrity. This mild, yet powerful method simply simply with molecular oxygen and a carbonate base. This oxidative entails stirring -substituted malononitriles with chiral or non-chiral protocol can be applied to both sterically and electronically amines in acetonitrile under O2 with a carbonate base. challenging substrates in a highly chemoselective, practical, and The stimulus for this work began during our discovery and rapid manner. The use of cyclopropyl and thioether substrates development of the base-promoted Nef oxidation of nitroalkenes or support the radical formation of -peroxy malononitrile species, nitroalkanes to form their ketones with oxygen (Eq. (1), Figure which can cyclize to dioxiranes that can monooxygenate 1).[5a,b] During the further development of a direct halogenative malononitrile -carbanions to afford activated acyl cyanides method to form amides under aerobic conditions,[5c] we isolated capable of reacting with amine nucleophiles. ,-diiodinated nitroalkanes (Eq. (2)) and recognized the mechanistic need to make intermediates that bear two electron- stabilizing groups X and Y (Eq. (3)).[5d] These substituents can thus not only stabilize transient radicals and anions, but also act as one- eaching high levels of cost economy and atom efficiency for an R or two-electron leaving groups. -
SROC Annex V
Annex V Major Chemical Formulae and Nomenclature This annex presents the formulae and nomenclature for halogen-containing species and other species that are referred to in this report (Annex V.1). The nomenclature for refrigerants and refrigerant blends is given in Annex V.2. V.1 Substances by Groupings V.1.1 Halogen-Containing Species V.1.1.1 Inorganic Halogen-Containing Species Atomic chlorine Cl Atomic bromine Br Molecular chlorine Cl2 Molecular bromine Br2 Chlorine monoxide ClO Bromine monoxide BrO Chlorine radicals ClOx Bromine radicals BrOx Chloroperoxy radical ClOO Bromine nitrate BrONO2, BrNO3 Dichlorine peroxide (ClO dimer) (ClO)2, Cl2O2 Potassium bromide KBr Hydrogen chloride (Hydrochloric acid) HCl Inorganic chlorine Cly Antimony pentachloride SbCl5 Atomic fluorine F Molecular fluorine F2 Atomic iodine I Hydrogen fluoride (Hydrofluoric acid) HF Molecular iodine I2 Sulphur hexafluoride SF6 Nitrogen trifluoride NF3 IPCC Boek (dik).indb 467 15-08-2005 10:57:13 468 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System V.1.1.2 Halocarbons For each halocarbon the following information is given in columns: • Chemical compound [Number of isomers]1 (or common name) • Chemical formula • CAS number2 • Chemical name (or alternative name) V.1.1.2.1 Chlorofluorocarbons (CFCs) CFC-11 CCl3F 75-69-4 Trichlorofluoromethane CFC-12 CCl2F2 75-71-8 Dichlorodifluoromethane CFC-13 CClF3 75-72-9 Chlorotrifluoromethane CFC-113 [2] C2Cl3F3 Trichlorotrifluoroethane CCl FCClF 76-13-1 CFC-113 2 2 1,1,2-Trichloro-1,2,2-trifluoroethane