Conservation Assessment for Inland Cutthroat Trout

Total Page:16

File Type:pdf, Size:1020Kb

Conservation Assessment for Inland Cutthroat Trout USDA Forest Service February 1995 General Technical Report RM-GTR-256 Conservation Assessment for Inland Cutthroat Trout Technical Editor: Michael K. Young, Fisheries Scientist Rocky Mountain Forest and Range Experiment Stationl I Headquarters is in Fort Collins, Colorado, in cooperation with Colorado State University. -m■- 4 Contents Preface ........................................................................................................................ ii Acknowledgments ................................................................................................ iii Names of Fishes .................................................................................................... iv Chapter 1 Westslope Cutthroat Trout .................................................................................. 1 John D. McIntyre and Bruce E. Rieman Chapter 2 Colorado River Cutthroat Trout .......................................................................... 16 Michael K. Young Chapter 3 Rio Grande Cutthroat Trout ................................................................................ 24 John N. Rinne Chapter 4 Bonneville Cutthroat Trout .................................................................................. 28 Jeffrey L. Kershner Chapter 5 Yellowstone Cutthroat Trout .............................................................................. 36 Robert E. Gresswell Chapter 6 Synthesis of Management and Research Considerations ............................ 55 Michael K. Young i Preface This conservation assessment for inland cutthroat ment that identifies the current distribution and char- trout focuses on five subspecies found largely on acteristics of all known populations of each subspe- public lands in the Rocky Mountain and Intermoun- cies is in preparation. tain West. Though derived from a common ancestor, A second goal of the assessment is to help manag- these subspecies have diverged at different rates to ers to make informed choices about the consequences the extent that one was proposed for elevation to full of land management for these subspecies. For some species status (Allendorf and Leary 1988) and another populations of certain subspecies, some of the data may be composed of up to three genetically distin- are available, but the habitats and life history strate- guishable groups (Shiozawa and Evans 1994). The gies of most populations are unstudied. Inventories five subspecies herein were selected because they of fish behaviors, life histories, and distribution, have become rare, they occupy lands under a vari- coupled with genetic analyses, are necessary to iden- ety of jurisdictions, and coordinated, progressive tify the total phenotypic and genotypic variability of management could halt a further decline to extinc- each subspecies, to recognize evolutionarily unique tion. Secure subspecies, those already listed under stocks, and to predict their response to management. the Endangered Species Act, and those of uncertain Future research must center on these information taxonomic status were not considered. As the ability gaps. to recognize taxonomic differences between subspe- An implicit assumption in each chapter is that these cies improves, consideration of new or existing sub- native fishes are worth saving, and that we have an species is merited. ethical and legal obligation to prevent them from The primary goal of the assessment is to identify going extinct. Though many readers may share that the state of the science for each subspecies. Recent vision, the choice of tactics to achieve it will not be treatises (Gresswel11988; Behnke 1992) summarized unanimous. Individuals, interest groups, states, and portions of this knowledge, but this assessment at- federal agencies will differ in their desire to see fed- tempts to be more comprehensive. Throughout this eral listing of these subspecies under the Endangered document, the authors sought to refrain from using Species Act or in their willingness to forfeit some information from one subspecies to interpret the bi- opportunities (to harvest fish, to angle for non- ology of another. In some instances this has been un- native fish, or to manage public lands for conflicting avoidable, because we are completely ignorant about purposes). Because these fish are vulnerable to ex- certain life history characteristics (or entire life his- tinction, we encourage the open, honest involvement tories) of subspecies. Also, the variability in length of everyone interested. A shared vision is the only among these chapters reflects the variability in our insurance for a future for these subspecies. knowledge; not surprisingly, the most abundant sub- species are also the best studied. A companion docu- Michael K. Young Literature Cited Allendorf, F.W., and R.F. Leary. 1988. Conservation interior stocks of cutthroat trout. American Fish- and distribution of genetic variation in a polytypic eries Society Symposium 4. species, the cutthroat trout. Conservation Biology Shiozawa, D.K., and R.P. Evans. 1994. Relationships 2:170-184. between cutthroat trout populations from thirteen Behnke, R.J. 1992. Native trout of western North Utah streams in the Colorado River and Bonneville America. American Fisheries Society Monograph 6. drainages. Utah Division of Wildlife Resources, Gresswell, R.E., ed. 1988. Status and management of Ogden. Final Report. Contract 92-2377. II Acknowledgments The authors thank the following people for reviewing portions of earlier ver- sions of this document: Robert Behnke Dan Mahony N. A. Binns Anita Martinez Michael Bozek Bruce May Dan Carty Tom Nesler Chris Clancy Bryce Nielson Jim Cooper Phil Pister Todd Crowl Dave Propst Don Duff Nick Schmal Lane Eskew Brad Shepard Kurt Fausch Clay Speas Mark Fowden Jerry Stefferud Chris Frissell Russ Thurow Jack Griffith Pat Van Eimeren Dale Hepworth Dan Vos Dave Langlois Robert White Names of Fishes Catostomidae Percidae Catostomus ardens Utah sucker Perca flavescens yellow perch Catostomus catostomus longnose sucker Catostomus commersoni white sucker Salmonidae Catostomus discobolus bluehead sucker Coregonus clupeaformis lake whitefish Catostomus latipinnis flannelmouth sucker Oncorhynchus aguabonita golden trout Catostomus platyrhynchus mountain sucker Oncorhynchus clarki Catostomus plebeius Rio Grande sucker bouvieri Yellowstone cutthroat Catostomus tahoensis Tahoe sucker trout Chasmistes liorus June sucker Oncorhynchus clarki clarki coastal cutthroat trout Oncorhynchus clarki Lahontan Centrarchidae henshawi cutthroat trout westslope cutthroat Micro pterus spp. bass Oncorhynchus clarki lewisi trout Oncorhynchus clarki Colorado River Cottidae cutthroat trout mottled sculpin pleuriticus Cottus bairdi fine-spotted Bonneville mottled Oncorhynchus clarki Cottus bairdi semiscaber subsp. cutthroat trout sculpin Bonneville cutthroat Bear Lake sculpin Oncorhynchus clarki utah Cottus extensus trout Oncorhynchus clarki Rio Grande Cyprinidae virginalis cutthroat trout Couesius plumbeus lake chub Oncorhynchus gilae Gila trout Gila atraria Utah chub Oncorhynchus gorbuscha pink salmon Gila bicolor tui chub Oncorhynchus kisutch coho salmon Gila copei leatherside chub Oncorhynchus mykiss rainbow trout, Gila pandora Rio Grande chub steelhead Gila robusta roundtail chub Oncorhynchus nerka kokanee Iotichthys phlegethontis least chub Oncorhynchus tshawytscha chinook salmon Phoxinus erythrogaster southern redbelly dace Prosopium abyssicola Bear Lake whitefish Ptychocheilus lucius Colorado squawfish Prosopium coulteri pygmy whitefish Ptychocheilus oregonensis northern squawfish Prosopium gemmiferum Bear Lake cisco Rhinichthys cataractae longnose dace Prosopium spilonotus Bonneville whitefish Rhinichthys osculus speckled dace Prosopium williamsoni mountain whitefish Richardsonius balteatus redside shiner Salmo trutta brown trout Semotilus atromaculatus creek chub Salvelinus confluentus bull trout Salvelinus fontinalis brook trout Esocidae Salvelinus namaycush lake trout Esox lucius northern pike Thymallus arcticus Arctic grayling iv Chapter 1 Westslope Cutthroat Trout John D. McIntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. Myrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu- The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un- of the divide, they are distributed mostly in Mon- til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen- each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Pend Oreille 4.1 females for each male (Huston et al. 1984), and River; the Spokane River above Spokane Falls; the the average length was 381 mm for females
Recommended publications
  • A Preliminary Assessment of the Native Fish Stocks of Jasper National Park
    A Preliminary Assessment of the Native Fish Stocks of Jasper National Park David W. Mayhood Part 3 of a Fish Management Plan for Jasper National Park Freshwater Research Limited A Preliminary Assessment of the Native Fish Stocks of Jasper National Park David W. Mayhood FWR Freshwater Research Limited Calgary, Alberta Prepared for Canadian Parks Service Jasper National Park Jasper, Alberta Part 3 of a Fish Management Plan for Jasper National Park July 1992 Cover & Title Page. Alexander Bajkov’s drawings of bull trout from Jacques Lake, Jasper National Park (Bajkov 1927:334-335). Top: Bajkov’s Figure 2, captioned “Head of specimen of Salvelinus alpinus malma, [female], 500 mm. in length from Jaques [sic] Lake.” Bottom: Bajkov’s Figure 3, captioned “Head of specimen of Salvelinus alpinus malma, [male], 590 mm. in length, from Jaques [sic] Lake.” Although only sketches, Bajkov’s figures well illustrate the most characteristic features of this most characteristic Jasper native fish. These are: the terminal mouth cleft bisecting the anterior profile at its midpoint, the elongated head with tapered snout, flat skull, long lower jaw, and eyes placed high on the head (Cavender 1980:300-302; compare with Cavender’s Figure 3). The head structure of bull trout is well suited to an ambush-type predatory style, in which the charr rests on the bottom and watches for prey to pass over. ABSTRACT I conducted an extensive survey of published and unpublished documents to identify the native fish stocks of Jasper National Park, describe their original condition, determine if there is anything unusual or especially significant about them, assess their present condition, outline what is known of their biology and life history, and outline what measures should be taken to manage and protect them.
    [Show full text]
  • Burbot Management Plan
    BURBOT MANAGEMENT PLAN DEPARTMENT OF INLAND FISHERIES AND WILDLIFE DIVISION OF FISHERIES AND HATCHERIES PREPARED BY SCOTT A. ROY ASSISTANT REGIONAL FISHERIES BIOLOGIST REGION E MARCH 2001 BURBOT LIFE HISTORY The burbot, Lota lota (Linnaeus), is a unique member of the cod family. It is the only species in the family, which spends its entire life in fresh water. However, the burbot is similar to its marine relatives in that its distribution is circumpolar. It can be found in cool, fresh waters throughout northern Europe, Asia and North America. In North America its range extends as far south as the northern tier of States across the United States. In Maine, the burbot is commonly known as the cusk, although in other areas it is also called the ling, eelpout, loche and lawyer. Unlike the salmonids and Maine’s other coldwater species, the burbot is not noted for its grace and beauty. The body is elongate, almost eel-shaped, with long, soft-rayed dorsal and anal fins that meet a rounded tail. Although it is smooth and slimy to the touch, the skin is embedded with very small, cycloid scales. The head of the burbot is broad and somewhat flattened. It has a large mouth containing several rows of small teeth on the jaws. A single, whisker-like barbell protrudes from the tip of the chin. There are no obvious external differences between males and females. In general, adults are olive brown to dark brown on the back and sides. This background is overlaid with distinctive patterns of dark brown or black markings and spots.
    [Show full text]
  • Phylogeography and the Origins of Range Disjunctions in a North Temperate Fish, the Pygmy Whitefish (Prosopium Coulterii), Infer
    Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Phylogeography and the origins of range ARTICLE disjunctions in a north temperate fish, the pygmy whitefish (Prosopium coulterii), inferred from mitochondrial and nuclear DNA sequence analysis Jonathan D. S. Witt1,2*, Randy J. Zemlak3 and Eric B. Taylor2 1Department of Biology, University of ABSTRACT Waterloo, 200 University Ave. West, Waterloo, Aim To investigate the degree of phylogeographical divergence within pygmy ON, Canada N2L 3G1, 2Department of Zoology and Native Fishes Research Group, whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of University of British Columbia 6270 University disjunct populations within North America. Blvd, Vancouver, BC, Canada V6T 1Z4, Location North America from western Alaska to Lake Superior. 3Peace/Williston Fish and Wildlife Compensation Program, 1011 4th Ave., Prince Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS-1, ITS-2) DNA George, BC, Canada V2L 3H9 sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS-2, but the relationships among lineages were not resolved by the ITS-1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times.
    [Show full text]
  • Sport-Fish-Identification.Pdf
    Walleye Walleye have two distinct fins on their back, the first with large spines. Lake Sturgeon They have a yellow-olive back, brassy, silvery sides with yellow spots, a white underside, and white on the lower lobe of the tail. Dusky vertical Lake Sturgeon are a Threatened Species due to population size and bars are often found on the body as well. concerns with viability. Lake Sturgeon have a large brown or grey body covered with tough, leather- like tissue and five rows of bony plates. They have a shark-like, upturned tail and a pointed snout with four barbels. Sauger Lake Whitefish are olive-green to blue on the back, with silvery sides.They Sauger are a Threatened Species due to hybridization, habitat Lakehave a small Whitefish mouth below a rounded snout, and a deeply forked tail. degradation and overharvest. Sauger are golden olive on the back with silver-yellow sides and a white underside. They also have a large spiny dorsal fin, distinct rows of spots on the dorsal fins and three or four dusky vertical bars on the body. Mountain Whitefish have large scales, no spots and small mouths with no Burbot Mountainteeth. Their general Whitefish body colour is a bronze-white or greenish white. Burbot have a slim, brownish black body with smooth skin, a flattened head, and a fin that stretches along the back half of the body. Distinctive barbels hang from the lower jaw and nostrils. Goldeye Northern Pike Goldeye have prominent eyes with bright yellow pupils, a blunt head, and Northern Pike are a long, slender fish with duck-like jaws and a long, flat a deep, compressed body.
    [Show full text]
  • WDFW Final Status Report for the Pygmy Whitefish
    STATE OF WASHINGTON September 1998 WashingtonWashington StateState StatusStatus ReportReport forfor thethe PygmyPygmy Whitefish Whitefish byby MollyMolly HallockHallock andand PaulPaul E.E. MongilloMongillo Washington Department of FISH AND WILDLIFE Fish Management Program Freshwater Resource Division Washington State Status Report for the Pygmy Whitefish by Molly Hallock and Paul E. Mongillo Washington Department of Fish and Wildlife Fish Management Program 600 Capitol Way North Olympia, Washington 98501-1091 September 1998 The Washington Department of Fish and Wildlife maintains a list of endangered, threatened and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix A). In 1990, the Washington Fish and Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix B). The procedures include how species listing will be initiated, criteria for listing and de-listing, public review and recovery and management of listed species. The first step in the process is to develop a preliminary species status report. The report includes a review of information relevant to the species’ status in Washington and addresses factors affecting its status including, but not limited to: historic, current, and future species population trends, natural history including ecological relationships, historic and current habitat trends, population demographics and their relationship to long term sustainability, and historic and current species management activities. The procedures then provide for a 90-day public review opportunity for interested parties to submit new scientific data relevant to the status report, classification recommendation, and any State Environmental Policy Act findings. During the 90-day review period, the Department holds statewide public meetings to answer questions and take comments.
    [Show full text]
  • SPECIAL SCIENTIFIC REPORT-FISHERIES Na 590 SPECIAL SCIENTIFIC REPORT-FISHERIES
    XFWS-A 590 1-20 (1969) U.S. Fish Wildl. Serv. 590 Spec. Sci. Rep. Fish. Distributions of Fishes in Fresh Water of Katmai National Monument, Alaska, and Their Zoogeographical Implications Ul ©^ A R Y AUG 10 1971 WOODS HOLE. mSS. SPECIAL SCIENTIFIC REPORT-FISHERIES Na 590 SPECIAL SCIENTIFIC REPORT-FISHERIES Robert L. Hacker, Editor Mary Fukuyama, Associate Editor PUBLICATION BOARD John A. Gulnan John M. Patton, Jr. Robert L. Hacker Edward A. Schaefers John I. Hodges Parker S. Trefethen Harvey Hutchings Robert C. WUson Leslie W. Scattergood, Chairman Special Scientific Report—Fisheries are preliminary or progress reports and reports on scientific Investigations of restricted scope. Established as Special Scientific Reports in 1940, nos. 1 to 67 were Issued from that date to 1949, when the new series. Special Scientific Report— Fisheries, with new serial numbering, was started. Special Scientific Report— Fisheries are distributed free to Libraries, research institutions. State agencies, and scientists. UNITED STATES DEPARTMENT OF THE INTERIOR U.S. Fish and Wildlife Service BUREAU OF COMMERCIAL FISHERIES Distributions of Fishes in Fresh Water of Katmai National Monument, Alaska, and Their Zoogeographical Implications By WILLIAM R. HEARD, RICHARD L, WALLACE and WILBUR L. HARTMAN United States Fish and Wildlife Service Special Scientific Report- -Fisheries No. 590 Washington, D.C. October 1969 2 CONTENTS Page Introduction ^ Fresh-water areas of the monument 3 Bristol Bay Drainage ^ Shelikof Strait Drainage '* Methods and equipment 5 Annotated
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Alaskan Kokanee Species Status Report
    Kokanee Salmon, (Oncorhynchus nerka) Data: Alaska Department of Fish & Game Partners: AK__________________________ Species Status Review: most northern population in North America at latitude 62.42° North. Kokanee are generally known as the much smaller form of the sockeye salmon O. nerka that Range of Kokanee: completes its life cycle entirely in freshwater. Kokanee are differentiated from “residual The native range of kokanee salmon is from the sockeye salmon,” which are the non-anadromous Kenai Peninsula south through Southeast Alaska progeny of anadromous fish. While kokanee are extending south to the Deschutes River in primarily found in landlocked lakes they also Oregon. Kokanee are also found in Asia ranging occur in anadromous systems. Kokanee typically from Japan to Siberia. exist independently from the anadromous form by segregating spatially and temporarily. The status of specific stocks of native kokanee populations in Alaska is unknown and few have ever been evaluated. The abundance of kokanee appears to vary significantly from very abundant in some lakes to very small populations in others. No specific explanation for the widely varying abundance is known. Sportfishing Status of Kokanee: Throughout their native range, kokanee are a sport fish but are considered somewhat difficult to catch since they are primarily plankton feeders. While kokanee are occasionally targeted by sport Kokanee Habitat Requirements: anglers in Alaska they are generally caught incidentally by anglers targeting trout or Dolly Kokanee require spawning habitat with adequate Varden. In Southeast Alaska, these landlocked gravel in inlet or outlet streams, or along lake sockeye salmon seldom grow to more than 7 to 9 bottoms.
    [Show full text]
  • Growth and Morphometry of the Pygmy Whitefish
    GROWTH AND MORPHOMETRY OF THE PYGMY WHITEFISH (PROSOPIUM COULTERI) INBRITISH COLUMBIA by PETER JAMES MCCART B.A. The University of Oregon, 1958 A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE in the DEPARTMENT OF ZOOLOGY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1963 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Institute of Fisheries Department of Zoology The University of British Columbia Vancouver 8, Canada 6 September 1963 i ABSTRACT The present study is, in part, a description of meristic variation in the pygmy whitefish, Prosopium coulteri, of British Columbia fish with those of other areas. The species was shown to be highly variable meristically both within and between populations. There are indications in some characters of a north-south cline of meristic counts. One character (gill raker counts) seems to form a V-shaped curve of variation. The major part of the study is a comparison of the growth and relative growth of fish from four British Columbia lakes. The two "giant" forms from MacLure and McLeese Lakes are more like one another in relative growth than like either of the two dwarf forms inhabiting Cluculz Lake or Tacheeda Lake.
    [Show full text]
  • Westslope Cutthroat Trout
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu­ The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un­ of the divide, they are distributed mostly in Mon­ til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen­ each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al.
    [Show full text]
  • Range Extension for Pygmy Whitefish (Prosopium Coulterii)
    70 THE CaNaDiaN FiElD -N aTuRalisT Vol. 129 Range Extension for Pygmy Whitefish ( Prosopium coulterii ) in the Northwest Territories, Canada Paul VECsEi 1 and DamiaN PaNayi Golder associates ltd., 9–4905 48th street, yellowknife, Northwest Territories X1a 3s3 Canada 1Corresponding author: [email protected] Vecsei, Paul, and Damian Panayi. 2015. Range extension for Pygmy Whitefish ( Prosopium coulterii ) in the Northwest Territories, Canada. Canadian Field-Naturalist 129(1): 70–75. We document the first occurrence of Pygmy Whitefish ( Prosopium coulterii ) in the Northwest Territories outside of Great Bear lake. six specimens were captured in Bluefish lake in september 2012. Bluefish lake is on the yellowknife River, approximately 25 km upstream from Great slave lake. Key Words: Range extension; Pygmy Whitefish; Prosopium coulterii ; Northwest Territories; Coregoninae; distribution; Bluefish lake; yellowknife lake; Great slave lake Introduction ing the retreat of the Wisconsin glaciation (Eschmeyer The Pygmy Whitefish ( Prosopium coulterii ) is the and Bailey 1955). smallest member of the subfamily Coregoninae. it has in lakes, the Pygmy Whitefish ranges from shoreline large scales, large eyes, a blunt snout with a subtermi - habitat to waters as deep as 168 m (Heard and Hartman nal mouth, and a cylindrical body. its gill rakers are 1965; lindsey and Franzin 1972). at northern latitudes, short and number between 13 and 20. scales along the species is most common in shallow water. although the lateral line range between 54 and 70 (Eschmeyer the Pygmy Whitefish is typically lake dwelling, it also and Bailey 1955). The Pygmy Whitefish is typical of occurs in fast-moving montane rivers and streams that fishes in the genus Prosopium in having a single inter - are clear or silted (mcPhail and lindsey 1970; may - narial flap (mcPhail and lindsey 1970).
    [Show full text]
  • The California and Nevada Departments of Fish and Game Initiated the Cooperative Lake Tahoe Fisheries Study on July 1, 1960
    REPRINTS FROM Calif. Fish and Game, 54(2) : 68-89. 1968. AN EVALUATION OF TROUT PLANTING IN LAKE TAHOE' ALMO J. CORDONE Inland Fisheries Branch California Department of Fish and Game and TED C. FRANTZ Nevada Fish and Game Department Reno, Nevada Experimental plants of various strains of rainbow and cutthroat trout (SaImo gairdnerii and S. clarkii) made in Lake Tahoe from 1960 to 1963 were evaluated for both immediate and long-range contributions to the sport fishery. None of the plants was considered as successful as was desired. Lahontan and Yellowstone cutthroat (S. c. henshawi and S. c. lewisi) contributed least to the fishery. Estimated total harvests of va- rious Kamloops rainbow (S. g. kamloops) plants were never greater than 4%. However, they showed some potential for providing a long- range or premium fishery. Domestic rainbow contributed relatively few premium fish to the creel, but had the highest immediate returns (3 to 36%). The majority of those caught were recaptured within 60 days of release. An occasional Kamloops and domestic rainbow survived in the lake for as long as 3 to 4 years. To demonstrate other characteristics (e.g., movements, growth, etc.) of trout stocked in Lake Tahoe, returns from plants made over a 9-year period (1956-1964) were used. Kam- loops and Williams Lake rainbow (a wild strain from Idaho) distributed themselves widely in Tahoe's limnetic zone, and the Kamloops commonly entered its tributaries. Domestic and Pyramid Lake rainbow (a wild strain from Nevada) tended to remain in the lake in shallow, roe.), areas. Initially, planted trout grew at a rate of about 0.4 inch per month and then gradually tapered off to about 0.1 inch per month after 30 months in the lake.
    [Show full text]