Fast Reactors in Russia: State of the Art and Trends of Development

Total Page:16

File Type:pdf, Size:1020Kb

Fast Reactors in Russia: State of the Art and Trends of Development XA0202595 Annex XIII: Russia FAST REACTORS IN RUSSIA: STATE OF THE ART AND TRENDS OF DEVELOPMENT V. M. Popiavsky1), Yu. M. Ashurko1>, K. V. Zverev 2), N. N. Oshkanov 3), A. S. Koroi'kov 4), A. i. Filin 5) 1) State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF IPPE), Obninsk; 2) Ministry of the Russian Federation for Atomic Energy (RF MiNATOM), Moscow; o) Beloyarskaya Nuclear Power Plant (BN PP), Zarechny, 4) State Scientific Center of the Russian Federation - Research institute of Atomic Reactors (SSC RF- RIAR), Dimitrovgrad; 5) Research and Design institute of Power Engineering (RDIPE), Moscow Submitted to 35th Meeting of IAEA Technical Working Group on Fast Reactors, Karlsruhe, Germany, 22-26 April 2002 CONTENTS 1. NUCLEAR POWER IN RUSSIA 1.1. NUCLEAR POWER OF RUSSIA IN 2001-2002 1.2. PLANS OF FURTHER DEVELOPMENT OF NUCLEAR POWER IN RUSSIA 2. FAST REACTORS 2.1. FAST REACTOR OPERATION IN 2001 2.1.1. BN-600 REACTOR NPP 2.1.2. EXPERIMENTAL REACTOR BOR-60 2.1.3. EXPERIMENTAL REACTOR BR-10 2.2. CONSTRUCTION OF NPP WITH BN-800 REACTOR 2.3. PARTICIPATION IN WORK ON BN-350 REACTOR DECOMMISSIONING 2.4. MAIN TRENDS OF DESIGN STUDIES IN FAST REACTOR AREA 3. ACCELERATOR DRIVEN SYSTEMS 1. NUCLEAR POWER IN RUSSIA 1.1. NUCLEAR POWER OF RUSSIA IN 2001 - 2002 In Table 1 presented are the number and types of NPP units operated in Russia. The first power unit of Rostovskaya NPP with WER-1000 reactor joined this number last year: it was started up on February 23, 2001 and put into commercial operation at the end of the year. Total power of 30 reactor units installed at 10 NPP is now equal to 22.242 GW sharing as much as 15% of total energy production in Russia. In the European Russia, this share is 20 % in average, reaching 30 to 40% in the industrial areas (north-western and central regions of European territory of Russia). In 2001, 134948.1 million kW-h of electric energy was produced by the NPP, i.e. -104.7 % of 2000 year's production. During the previous two years, about 50 % of total energy production increase in Russia has been provided by the nuclear power plants. In 2001, average load factor value for all NPPs (except for the first power unit of Rostovskaya NPP, which was on semi-commercial operation stage) was equal to 70.26 % as compared to 69.07 % in 2000. Scheduled reactor outage time was also taken into account thus decreasing load factor value. During 2001, 66 cases of abnormal reactor operation took place in the NPP including 46 cases referring to "0" level of INES and 20 "out of scale" cases. Figs. 1 and 2 show dynamics of NPP abnormal operation cases for the previous nine years, including those are related to safety according to the INES. 1.2. PLANS OF FURTHER DEVELOPMENT OF NUCLEAR POWER IN RUSSIA Federal policy of Russia in the area of nuclear power is determined by the "Power industry Strategy of Russia Until 2020" and related "Strategy of Nuclear Power Development in Russia in the First Half of XXI Century". The following two power units are planned for putting into operation until 2005: - fifth power unit of Kurskaya NPP with RBMK-1000 reactor; - third power unit of Kalininskaya NPP with WER-1000 reactor. Work is now under way on lifetime extension by 10 years for the power units in operation, and primarily for the first generation power units. In the period until 2010, 9 new power units of 8.8 GW totai output are planned to put into operation in the Russian Federation, including that with the BN-800 reactor in Beloyarskaya NPP. In the next decade (2010-2020), it is planned to increase the rate of introduction of nuclear power by 2 to 2.5 times, i.e. up to 2.5 million kW per year. The rate of increase of electricity production at NPP will be about 5% per year until 2020, being twice as much as that for fossil fuel and hydro-electric power plants. Nuclear power share in the European Russia will increase from 20% (as of 2000) up to 27% by 2010 and 37% by 2020. This means that structural change is planned in the national power industry in favor of nuclear power. boo Table 1 List of operating nuclear power units in Russia Year of putting Installed electric No. NPP No. of Reactor type >ower uni into operation power, MW 1 1 „., 1973 440 ! 2 2 WER-440 1974 440 WER-440 I 3 3 1981 440 Kola NPP WER-440 | 4— 4 1984 440 WER-440 NPP 1760 3 WER-440 1971 417 Novovoronezh NPP 4 WER-440 1972 417 TOTAL FOR WER-440 2594 7 5 WER-1000 1980 1000 Novovoronezh NPP NPP 1834 8 1 WER-1000 1985 1000 9 2 WER-1000 1987 1000 I 10 Baiakovo NPP 3 WER-1000 1988 1000 ! 11 4 WER-1000 1993 1000 : I NPP I 4000 ! 12 1 WER-1000 1984 1000 I 13 Kalinin NPP 2 WER-1000 1986 1000 NPP 2000 i 14 Rostov NPP -j WER-1000 2001 1000 TOTAL FOR WER-1000 8000 ! 15 1 RBMK-1000 1976 1000 ! 16 RBMK-1000 1979 1000 17 Kursk NPP RBMK-1000 1983 1000 18 A RBMK-1000 1985 1000 j NPP 4000 i 19 RBMK-1000 1973 1000 20 RBMK-1000 1975 1000 21 Leningrad NPP 3 RBMK-1000 1979 1000 j 22 4 RBMK-1000 1981 1000 I NPP 4000 23 RBMK-1000 1982 1000 24 RBMK-1000 1985 1000 Smolensk NPP ; 25 RBMK-1000 1990 1000 I NPP 3000 TOTAL FOR RBMK •:•'" : . : 11000 26 EGP-6 1974 12 27 2 EGP-6 1974 A O 28 Bilibino NPP EGP-6 1975 12 29 EGP-6 1976 12 NPP 48 | 30 Beloyarskaya NPP <BN) i L BN-600 1980 600 TOTAL NUCLEAR POWER 22242 564 2. FAST REACTORS 2.1. FAST REACTOR OPERATION IN 2001 During 2001, three fast reactors were in operation in Russia: - experimental reactor BR-10 (IPPE, Obninsk); - experimental reactor BOR -60 (RIAR, Dimitrovgrad); - NPP with BN-600 reactor (BNPP, Zarechny). 2.1.1. BN-600 REACTOR NPP As of 28 January 2002, total time of the BN-600 reactor operation under critical condition since its first start-up is 150000 hours (which is equal to 17.1 years), including 15.4 years of operation at the rated power level (5611 eff. days). Average load factor values taken for the whole period of reactor operation and period of its commercial operation are respectively equal to 69.9% and 73.3%. The diagram showing load factor behavior during the period of commercial operation of the BN-600 power unit (upon reaching rated power level of the reactor) is shown in Fig. 3. Fig. 4 presents power unit load carried in 2001. The main characteristics of the BN-600 reactor operation in 2001 and during the whole period since its putting into service are given in Table 2. Table 2 Since start-up to Characteristics 2001 31.12.2001 Energy production, million kW-h 4199.2 79872.9 Heat supply of consumers, thousand Gcaf 376.9 i 4112.4 Load factor, % 79.89 ! 69.9 Time of critical reactor operation, h 7366 I 149348 Number of reactor shut-downs 2 | 89 Number of loop outages 1 | 69 As seen from the load chart (Fig. 4) and Table 2, in 2001 there were two reactor shut-downs for scheduled preventive repair and one loop outage due to loss of excitation of the turbo-generator. No unscheduled reactor shut-downs occurred in this period. Load factor decrease was as follows: - scheduled repair- 18.28%; - external conditions (heat supply) - 0.81 %; - failures of components - 0.37%; - loop outage - 0.65%. Maximum decrease of electric power caused by heat supply by the steam taken from the turbine non-controlled bleed-off and from steam generators in the winter time is 47 MW (~7.8% No). Annual decrease of load factor for this reason is 0.8-5-1.8%. Dates of scheduled preventive repair performed in 2001 are as follows: - medium repair: from 04.05.2001 to 23.06.2001, 50.7 days (Fig. 4, item 2); - routine repair: from 14.10.2001 to 26.10.2001, 13.7 days (Fig. 4, item 4). Loop No. 5 outage lasted from 30.01.2001 to 04.02.2001 (Fig. 4, item 1). Medium and routine repair of the power unit included the following activities: - reactor refueling; - replacement of 8 control rod guide tubes (lifetime expiry); - replacement of 2 safety rod drives (iifetime expiry); - replacement of shafts of No. 4 main pumps of the primary and secondary circuits (iifetime expiry); - elimination of vibration in No.6 main secondary pump and hydraulic drive of the check valve of No. 4 primary pump; - examination of sodium-sodium intermediate heat exchanger 6 1HX-B; - repair of steam pipeline joints at No. 5 steam generator (metal body defect); - examination of steam generator evaporators inciuding cutting out tubes from 5E-A3 evaporator with maximum operating time; - chemical washing of evaporators of SG-6 steam generator; - routine control of metal according to the schedule; - replacement of membranes on 5UPM-C and D safety systems preventing from water leak into sodium (lifetime expiry); - pressurization tests of No. 6 secondary loop; - medium repair of No. 4 turbine implying overhaul of low pressure cylinder; - replacement of No. 4-C feed water pump (lifetime expiry). During 2001, there were no violations of safe operation conditions preset by reactor design even in case of loop outage, which was classified referring to INES as "out of scale" incident.
Recommended publications
  • Tokamak Foundation in USSR/Russia 1950--1990
    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003 Tokamak foundation in USSR/Russia 1950–1990 V.P. Smirnov Nuclear Fusion Institute, RRC ’Kurchatov Institute’, Moscow, Russia Received 8 June 2009, accepted for publication 26 November 2009 Published 30 December 2009 Online at stacks.iop.org/NF/50/014003 In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER. (Some figures in this article are in colour only in the electronic version) At the opening ceremony of the United Nations First In the USSR, NF research began in 1950.
    [Show full text]
  • State Atomic Energy Corporation Rosatom Performance in 2018
    State Atomic Energy Corporation Rosatom Performance in 2018 State Atomic Energy Corporation Rosatom Performance in 2018 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2018 2 3 TABLE OF CONTENTS Chapter 7. Development of the Northern Sea Route 94 7.1. ROSATOM's Powers Related to the Development and Operation 97 Report Profile 4 of the Northern Sea Route 7.2. Performance of the Nuclear-Powered Icebreaker Fleet 97 and Development of the Northern Sea Route Chapter 1. Our Achievements 6 About ROSATOM 9 Chapter 8. Effective Management of Resources 100 Key Results in 2018 10 Key Events in 2018 11 8.1. Corporate Governance 102 Address by the Chairman of the Supervisory Board 12 8.2. Risk Management 109 Address by the Director General 13 8.3. Performance of Government Functions 116 Address by a Stakeholder Representative 14 8.4. Financial and Investment Management 119 Financial and Economic Results 15 8.5. ROSATOM's Production System 126 8.6. Procurement Management 128 8.7. Internal Control System 132 Chapter 2. Strategy for a Sustainable Future 16 8.8. Prevention of Corruption and Other Offences 134 2.1. Business Strategy until 2030 18 2.2. Sustainable Development Agenda 23 Chapter 9. Development of Human Potential 136 2.3. Value Creation and Business Model 27 and Infrastructure Chapter 3. Contribution to Global Development 32 9.1. Implementation of the HR Policy 138 9.2. Developing the Regions of Operation 150 3.1. Markets Served by ROSATOM 34 9.3. Stakeholder Engagement 158 3.2. International Cooperation 44 3.3. International Business 52 Chapter 10.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • History of Radiation and Nuclear Disasters in the Former USSR
    History of radiation and nuclear disasters in the former USSR M.V.Malko Institute of Power Engineering National Academy of Sciences of Belarus Akademicheskaya Str.15, Minsk, 220 000, Republic of Belarus E-mail: [email protected] Abstracts. The report describes the history of radiation and nuclear accidents in the former USSR. These accidents accompanied development of military and civilian use of nuclear energy. Some of them as testing of the first Soviet nuclear, Kyshtym radiation accident, radiation contamination of the Karachai lake and the Techa river, nuclear accidents at the Soviet submarine on August 10, 1985 in the Chazhma Bay (near Vladivostok) as well as nuclear accidents on April 26, 1986 at the Chernobyl NPP were of large scale causing significant radiological problems for many hundreds thousands of people. There were a number of important reasons of these and other accidents. The most important among them were time pressure by development of nuclear weapon, an absence of required financial and material means for adequate management of problems of nuclear and radiation safety, and inadequate understanding of harmful interaction of ionizing radiation on organism as well as a hypersecrecy by realization of projects of military and civilian use of nuclear energy in the former USSR. Introduction. The first nuclear reactor in the USSR reached the critical state on the 25 December 1946 [1] or 4 years later than reactor constructed by Enrico Fermi [2]. The first Soviet reactor was developed at the Laboratory N2 in Moscow (later I.V.Kurchatov Institute of Atomic Energy). This was a very important step in a realization of the Soviet military atomic program that began in September 1942.
    [Show full text]
  • 1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
    Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science.
    [Show full text]
  • Citizen Scientist: Frank Von Hippel's Adventures in Nuclear Arms Control
    JOURNAL FOR PEACE AND NUCLEAR DISARMAMENT https://doi.org/10.1080/25751654.2019.1698504 Citizen Scientist: Frank von Hippel’s Adventures in Nuclear Arms Control PART 2. Engaging with nuclear-weapons policy Frank von Hippel and Tomoko Kurokawa ABSTRACT ARTICLE HISTORY This section covers von Hippel’s first engagement with nuclear- Received 11 September 2019 weapons issues, starting with a review of a US Secretary of Defense’s Accepted 26 November 2019 fi claim that a Soviet nuclear rst strike on US nuclear weapons would kill KEYWORDS – ff only 15,000 25,000 people, through his e orts to revive the proposal Limited nuclear war; spent for a treaty to ban the production of more plutonium and highly- fuel reprocessing; nuclear- enriched uranium for nuclear weapons, and ending with the begin- weapons freeze movement; ning of a collaboration with a group of Gorbachev’s advisors to end the automobile energy Cold War. It also includes his and his colleagues’ engagement in the efficiency; fissile material successful effort to end the US government’s promotion of of a nuclear production cutoff weapons material, plutonium, as a nuclear fuel, and a failed effort to require the doubling of the average fuel efficiency of US automobiles. Limited Nuclear War Tomoko Kurakawa (TK): Before you left the National Research Council in 1975, did you do any work related to nuclear-weapon policy? Frank von Hippel (FvH): I did. It related to the new 10-warhead MX intercontinental ballistic missile1 that then Secretary of Defense James Schlesinger was promoting. Schlesinger presented his arguments to the Senate Foreign Affairs Committee in March 1974.
    [Show full text]
  • Some Methods for Calculation of Perturbations in Nuclear Reactors the Monte Carlo Estimation of the Effect of Uncertainties in T
    Abstracts Journal “Problems of Nuclear Science and Engineering. Series: Physics of Nuclear Reactors” issue No.4, 2014 UDC 519.6: 621.039.51 Some Methods for Calculation of Perturbations in Nuclear Reactors B.D. Abramov FSUE “SSC RF-IPPE”, 1, Bondarenko Sq., Obninsk, Kaluga Region, 249033 Some methods for calculation of local perturbations of neutrons fields and effects of reactivity accompany- ing them in nuclear reactors are developed. Theorems of existence and uniqueness of the solutions are estab- lished, schemes of numerical realization of offered methods are brought. Key Words: Neutron Transport Theory, Perturbations Theory, Reactivity Effects in Nuclear Reactors. UDC 621.039 The Monte Carlo Estimation of the Effect of Uncertainties in the Input Data for the Transport Equation Solving by the MCU Code D.S. Oleynik NRC “Kurchatov Institute”, 1, Kurchatov Sq., Moscow, 123182 Direct taking into account the initial data uncertainty is realized in the new version of tally module of the MCU code. This approach is recommended by international standard “A Guide to Expression of Uncertainty in Measurement” (ISO 13005). The new module allows calculating the effect of uncertainties in input quantities for neutron characteristics of core. These uncertainties are usually caused by technological tolerances. Devel- oped code is adapted to parallel computing that drastically decreases calculation time. Testing is performed by means of a simplified model of the Godiva bare-sphere critical experiment and infinite lattices of vari- ous fuel assemblies (VVER-440, VVER-1000 and VVER-1200). The results of calculation is com- pared with published MCNP5 ones (for Godiva experiment) and with RADAR engineering code ones.
    [Show full text]
  • Energy in Russia's Foreign Policy Kari Liuhto
    Kari Liuhto Energy in Russia’s foreign policy Electronic Publications of Pan-European Institute 10/2010 ISSN 1795 - 5076 Energy in Russia’s foreign policy Kari Liuhto 1 10/2010 Electronic Publications of Pan-European Institute www.tse.fi/pei 1 Kari Liuhto is Professor in International Business (specialisation Russia) and Director of the Pan- European Institute at the Turku School of Economics, University of Turku, Finland. His research interests include EU-Russia economic relations, energy relations in particular, foreign investments into Russia and the investments of Russian firms abroad, and Russia’s economic policy measures of strategic significance. Liuhto has been involved in several Russia-related projects funded by Finnish institutions and foreign ones, such as the Prime Minister’s Office, various Finnish ministries and the Parliament of Finland, the European Commission, the European Parliament, and the United Nations. Kari Liuhto PEI Electronic Publications 10/2010 www.tse.fi/pei Contents PROLOGUE 4 1 INTRODUCTION: HAVE GAS PIPES BECOME A MORE POWERFUL FOREIGN POLICY TOOL FOR RUSSIA THAN ITS ARMY? 5 2 RUSSIA’S ENERGETIC FOREIGN POLICY 8 2.1 Russia’s capability to use energy as a foreign policy instrument 8 2.2 Dependence of main consumers on Russian energy 22 2.3 Russia’s foreign energy policy arsenal 32 2.4 Strategic goals of Russia's foreign energy policy 43 3 CONCLUSION 49 EPILOGUE 54 REFERENCES 56 1 Kari Liuhto PEI Electronic Publications 10/2010 www.tse.fi/pei Tables Table 1 Russia’s energy reserves in the global scene (2008) 9 Table 2 The development of the EU’s energy import dependence 23 Table 3 The EU’s dependence on external energy suppliers 24 Table 4 Share of Russian gas in total primary energy consumption 26 Table 5 Natural gas storage of selected European countries 29 Table 6 Russia’s foreign policy toolbox 32 Table 7 Russia’s disputes with EU member states under Putin’s presidency 36 Table 8 Russia’s foreign energy policy toolbox 40 Table 9 Russia's potential leverage in the ex-USSR (excl.
    [Show full text]
  • Russian Analytical Digest No 101: Russia and the Nuclear Industry
    No. 101 1 August 2011 russian analytical digest www.res.ethz.ch www.laender-analysen.de Russia and the nucleaR industRy ■■AnAlysis Russia and Fukushima 2 By Vladimir Slivyak, Moscow ■■AnAlysis The Russian Anti-Nuclear Movement 6 By Alisa Nikulina, Moscow ■■stAtistics Nuclear Energy in Russia 9 ■■OpiniOn Poll Russian Attitudes on Nuclear Energy 11 Institute for European, Research Centre Center for German Association for Russian, and Eurasian Studies Institute of History for East European Studies Security Studies East European Studies The George Washington University of Basel University University of Bremen ETH Zurich RUSSIAN ANALYTICAL DIGEST No. 101, 1 August 2011 2 Analysis Russia and Fukushima By Vladimir Slivyak, Moscow summary Since the accident in Japan’s Fukushima power station, Russian officials have consistently reassured the pub- lic that Russian nuclear plants are safe. One reason for this position is Russia’s desire to export nuclear power technology. The events in Japan might have a detrimental effect on Russian exports. However, the nuclear industry is also experiencing severe problems on the domestic front. According to reports by the “Ekoza- shchita!” (EcoDefense!) environmental group, Russian nuclear plants have numerous defects. The security situation will not improve as long as the presidential administration and the government continue to try and convince the world that there are no problems in Russia’s nuclear power stations. Fukushima in Russia? eral times a year, leading government officials together In March this year, the nuclear power plant in Japan’s with Rosatom chief Sergei Kiriyenko demonstrated their Fukushima prefecture experienced a disaster that is still complete support for nuclear energy as one of Russia’s underway at the time of writing.
    [Show full text]
  • State Atomic Energy Corporation Rosatom
    STATE ATOMIC ENERGY CORPORATION ROSATOM. STATE ATOMIC ENERGY CORPORATION ROSATOM. PERFORMANCE IN 2019 PERFORMANCE IN 2019 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2019 TABLE OF CONTENTS Report Profile 4 CHAPTER 7. DEVELOPMENT OF THE NORTHERN SEA ROUTE 122 7.1. Escorting Vessels and Handling Cargo Traffic along the Northern Sea Route 127 CHAPTER 1. OUR ACHIEVEMENTS 6 7.2. Construction of New Icebreakers 128 History of the Russian Nuclear Industry 8 7.3. New Products 128 ROSATOM Today 10 7.4. Digitization of Operations 128 Key Results in 2019 14 7.5. Activities of FSUE Hydrographic Enterprise 129 Key Events in 2019 15 7.6. Plans for 2020 and for the Medium Term 130 Address by the Chairman of the Supervisory Board 16 Address by the Director General 17 CHAPTER 8. EFFECTIVE MANAGEMENT OF RESOURCES 132 Address by a Stakeholder Representative 18 8.1. Corporate Governance 135 Financial and Economic Results 20 8.2. Risk Management 141 8.3. Performance of Government Functions 155 CHAPTER 2. STRATEGY FOR A SUSTAINABLE FUTURE 22 8.4. Financial and Investment Management 158 2.1. Business Strategy until 2030 24 8.5. ROSATOM Production System 164 2.2. Sustainable Development Management 28 8.6. Procurement Management 168 2.3. Value Creation and Business Model 34 8.7. Internal Control System 172 8.8. Prevention of Corruption and Other Offences 174 CHAPTER 3. CONTRIBUTION TO GLOBAL DEVELOPMENT 40 3.1. Markets Served by ROSATOM 42 CHAPTER 9. DEVELOPMENT OF HUMAN POTENTIAL 176 3.2. International Cooperation 55 AND INFRASTRUCTURE 3.3. International Business 63 9.1.
    [Show full text]
  • The Russian Research Centre Kurchatov Institute Dr.Sergey
    EGEE kick-off, April, 19th, 2004 The Russian Research Centre www.eu-egee.org Kurchatov Institute Partner Introduction Dr.Sergey Teryaev RRC KI EGEE is a project funded by the European Union under contract IST-2003-508833 Contents • RRC KI history, current activities • Russian HEP institutes, networks • RRC KI Network activity <event>, <date> - 2 History of the Kurchatov Institute • The Russian Research Centre Kurchatov Institute founded in 1943 has a rich history. All 55 years of the Institute life are marked with historically valuable events important not only for Russia but also for the whole present-day world. They have science, politics, particular human destinies got mixed up. • Laboratory No.2 of the USSR Academy of Sciences - 12.04.1943 100 persons • Russian Research Center Kurchatov Institute -01.01.2002 5300 persons: engineers - 1850 Workes - 1050 Research workers - 2400. RAS Members - 17 Doctors and Candidates of Sciences - 1015 ….. • …… –…. <event>, <date> - 3 Main Direction of the R&D Activity The Russian Research Centre Kurchatov Institute has available a high- capacity high-resource research and experimental basis which includes large and sophisticated installations (plasma thermonuclear installations, various-purpose nuclear reactors, various-type accelerators, test facilities and other unique research equipment) as well as designing basis, large pilot-scale production. This extensive basis permits a full cycle of studies from the birth of scientific idea to development of technology and fabrication of finished product to be accomplished. • Safe development of Nuclear Power (Nuclear Power and its Fuel Cycle) • Controlled Thermonuclear Fusion and Plasma Processes • Nuclear Physics • Solid State Physics and Superconductivity • Communications Network for science and ISP (RIPN, Relcom) <event>, <date> - 4 RussianRussian HEPHEP InstitutionsInstitutions Russian Research Center "Kurchatov Institute Moscow, Russia Petersburg Nuclear Physics Institute of Russian Acad.
    [Show full text]
  • Sixty Years on from ZETA …
    Sixty years on from ZETA … Chris Warrick The Sun … What is powering it? Coal? Lifetime 3,000 years Gravitational Energy? Lifetime 30 million years – Herman Von Helmholtz, Lord Kelvin - mid 1800s The Sun … Suggested the Earth is at least 300 million years old – confirmed by geologists studying rock formations … The Sun … Albert Einstein (Theory of Special Relativity) and Becquerel / Curie’s work on radioactivity – suggested radioactive decay may be the answer … But the Sun comprises hydrogen … The Sun … Arthur Eddington proposed that fusion of hydrogen to make helium must be powering the Sun “If, indeed, the subatomic energy is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfilment our dream of controlling this latent power for the well-being of the human race – or for its suicide” Cambridge – 1930s Cockcroft Walton accelerator, Cavendish Laboratory, Cambridge. But huge energy losses and low collisionality Ernest Rutherford : “The energy produced by the breaking down of the atom is a very poor kind of thing . Anyone who expects a source of power from the transformation of these atoms is talking moonshine.” Oxford – 1940s Peter Thonemann – Clarendon Laboratory, Oxford. ‘Pinch’ experiment in glass, then copper tori. First real experiments in sustaining plasma and magnetically controlling them. Imperial College – 1940s George Thomson / Alan Ware – Imperial College London then Aldermaston. Also pinch experiments, but instabilities started to be observed – especially the rapidly growing kink instability. AERE Harwell Atomic Energy Research Establishment (AERE) Harwell – Hangar 7 picked up fusion research. Fusion is now classified. Kurchatov visit 1956 ZETA ZETA Zero Energy Thermonuclear Apparatus Pinch experiment – but with added toroidal field to help with instabilities and pulsed DC power supplies.
    [Show full text]