An Outline of the History of Pellagra in Italy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Familial Pellagra-Like Skin Rash with Neurological Manifestations
Arch Dis Child: first published as 10.1136/adc.56.2.146 on 1 February 1981. Downloaded from 146 Freundlich, Statter, and Yatziv Familial pellagra-like skin rash with neurological manifestations E FREUNDLICH, M STATTER, AND S YATZIV Department ofPaediatrics, Government Hospital, Nahariya, Israel, and Paediatric Research Unit and Department ofPaediatrics, Hadassah University Hospital, Jerusalem, Israel development was normal, although the skin rash SUMMARY A 14-year-old boy of Arabic origin was noted several times. On one occasion a skin presented with a pellagra-like rash and neurological biopsy was performed and reported to be compatible manifestations including ataxia, dysarthria, nystag- with pellagra. A striking improvement was again mus, and coma. There was a striking response to oral noticed after nicotinamide administration. nicotinamide. The laboratory findings were not The last admission was at age 14 years in late typical of Hartnup disease: aminoaciduria and November (as were all previous admissions). At indicanuria were absent and there was no evidence this time, he presented with mild confusion, diplopia, of tryptophan malabsorption. Tryptophan loading dysarthria, ataxia, and a pellagroid skin rash. His did not induce tryptophanuria nor did it increase general condition deteriorated during the next few excretion of xanthurenic or kynurenic acids. These days; he became unable to walk or stand, and both findings support the possibility of a block in trypto- horizontal and vertical nystagmus were observed. phan degradation. The family history suggests a He became apathetic and entered into deep coma genetically-determined disorder. 4 days after admission. The electroencephalogram showed a markedly abnormal tracing with short We report a patient with familial pellagra-like skin bursts of high voltage 2 5 per second activity with manifestations and laboratory rash, with neurological superimposed sharp waves, mainly over the posterior copyright. -
THE PATHOLOGIC PHYSIOLOGY of PELLAGRA: V. the Circulating Blood Volume
THE PATHOLOGIC PHYSIOLOGY OF PELLAGRA: V. The Circulating Blood Volume Roy H. Turner J Clin Invest. 1931;10(1):111-120. https://doi.org/10.1172/JCI100332. Find the latest version: https://jci.me/100332/pdf THE PATHOLOGIC PHYSIOLOGY OF PELLAGRA V. THE CIRCULATING BLOOD VOLUME By ROY H. TURNER (From the Department of Medicine, Tulane University of Louisiana School of Medicine, and the Medical Services of the Charity Hospital, New Orleans) (Received for publication October 27, 1930) Determination of circulating blood volume was undertaken as a part of a study of the disturbed physiology in pellagra, chiefly for the purpose of finding out whether shrinkage of plasma volume existed in patients who were suffering from a disease frequently characterized by severe diarrhea. Such a shrinkage would be of great importance of itself, and would obviously have a bearing upon the interpretation of the composition of the plasma determined at the same time. The existence of anemia can hardly be established nor its severity estimated -so long as we are in ignorance- of the plasma volume. It was also considered possible that the magnitude of the circulating blood volume might be correlated with certain of the features of the skin lesions, such as the degree of exudation of serum. I have used the dye method of Keith, Rowntree and Geraghty (1) modified as follows: A 3 per cent aqueous solution of brilliant vital red (National Analine Company) was made up 'the afternoon before use, and sterilized at 100°C. for 8 minutes. With a sterile calibrated pipette the quantity of this solution for each patient was placed in a sterile 50 cc. -
Nutrition 102 – Class 3
Nutrition 102 – Class 3 Angel Woolever, RD, CD 1 Nutrition 102 “Introduction to Human Nutrition” second edition Edited by Michael J. Gibney, Susan A. Lanham-New, Aedin Cassidy, and Hester H. Vorster May be purchased online but is not required for the class. 2 Technical Difficulties Contact: Erin Deichman 574.753.1706 [email protected] 3 Questions You may raise your hand and type your question. All questions will be answered at the end of the webinar to save time. 4 Review from Last Week Vitamins E, K, and C What it is Source Function Requirement Absorption Deficiency Toxicity Non-essential compounds Bioflavonoids: Carnitine, Choline, Inositol, Taurine, and Ubiquinone Phytoceuticals 5 Priorities for Today’s Session B Vitamins What they are Source Function Requirement Absorption Deficiency Toxicity 6 7 What Is Vitamin B1 First B Vitamin to be discovered 8 Vitamin B1 Sources Pork – rich source Potatoes Whole-grain cereals Meat Fish 9 Functions of Vitamin B1 Converts carbohydrates into glucose for energy metabolism Strengthens immune system Improves body’s ability to withstand stressful conditions 10 Thiamine Requirements Groups: RDA (mg/day): Infants 0.4 Children 0.7-1.2 Males 1.5 Females 1 Pregnancy 2 Lactation 2 11 Thiamine Absorption Absorbed in the duodenum and proximal jejunum Alcoholics are especially susceptible to thiamine deficiency Excreted in urine, diuresis, and sweat Little storage of thiamine in the body 12 Barriers to Thiamine Absorption Lost into cooking water Unstable to light Exposure to sunlight Destroyed -
Guidelines on Food Fortification with Micronutrients
GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry. -
Review Article Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central SAGE-Hindawi Access to Research Journal of Nucleic Acids Volume 2010, Article ID 157591, 13 pages doi:10.4061/2010/157591 Review Article Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair Devita Surjana, Gary M. Halliday, and Diona L. Damian Discipline of Dermatology, Sydney Cancer Centre, Bosch Institute, University of Sydney at Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2006, Australia Correspondence should be addressed to Gary M. Halliday, [email protected] Received 16 April 2010; Accepted 13 June 2010 Academic Editor: Ashis Basu Copyright © 2010 Devita Surjana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3). Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1). Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. -
A Computational Approach for Identifying Plant-Based Foods for Addressing Vitamin Deficiency Diseases
University of Vermont ScholarWorks @ UVM UVM Honors College Senior Theses Undergraduate Theses 2015 A Computational Approach for Identifying Plant-Based Foods for Addressing Vitamin Deficiency Diseases Christina Yu University of Vermont Indra Neil Sarkar University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/hcoltheses Recommended Citation Yu, Christina and Sarkar, Indra Neil, "A Computational Approach for Identifying Plant-Based Foods for Addressing Vitamin Deficiency Diseases" (2015). UVM Honors College Senior Theses. 212. https://scholarworks.uvm.edu/hcoltheses/212 This Honors College Thesis is brought to you for free and open access by the Undergraduate Theses at ScholarWorks @ UVM. It has been accepted for inclusion in UVM Honors College Senior Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A Computational Approach for Identifying Plant-Based Foods for Addressing Vitamin Deficiency Diseases Christina Yu1 and Indra Neil Sarkar2,3 Key words: computing methodologies, vitamin deficiency diseases, vegetarian diet 1 Undergraduate Program in Biochemistry, University of Vermont, Burlington, VT 2 Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 3 Center for Clinical and Translational Science, University of Vermont, Burlington, VT 1 ABSTRACT Vitamins are nutrients that are essential to human health, and deficiencies have been shown to cause severe diseases. In this study, a computational approach was used to identify vitamin deficiency diseases and plant-based foods with vitamin content. Data from the United States Department of Agriculture Standard Reference (SR27), National Library of Medicine's Medical Subject Headings and MEDLINE, and Wikipedia were combined to identify vitamin deficiency diseases and vitamin content of plant-based foods. -
VITAMIN DEFICIENCIES in RELATION to the EYE* by MEKKI EL SHEIKH Sudan VITAMINS Are Essential Constituents Present in Minute Amounts in Natural Foods
Br J Ophthalmol: first published as 10.1136/bjo.44.7.406 on 1 July 1960. Downloaded from Brit. J. Ophthal. (1960) 44, 406. VITAMIN DEFICIENCIES IN RELATION TO THE EYE* BY MEKKI EL SHEIKH Sudan VITAMINS are essential constituents present in minute amounts in natural foods. If these constituents are removed or deficient such foods are unable to support nutrition and symptoms of deficiency or actual disease develop. Although vitamins are unconnected with energy and protein supplies, yet they are necessary for complete normal metabolism. They are, however, not invariably present in the diet under all circumstances. Childhood and periods of growth, heavy work, childbirth, and lactation all demand the supply of more vitamins, and under these conditions signs of deficiency may be present, although the average intake is not altered. The criteria for the fairly accurate diagnosis of vitamin deficiencies are evidence of deficiency, presence of signs and symptoms, and improvement on supplying the deficient vitamin. It is easy to discover signs and symptoms of vitamin deficiencies, but it is not easy to tell that this or that vitamin is actually deficient in the diet of a certain individual, unless one is able to assess the exact daily intake of food, a process which is neither simple nor practical. Another way of approach is the assessment of the vitamin content in the blood or the measurement of the course of dark adaptation which demon- strates a real deficiency of vitamin A (Adler, 1953). Both tests entail more or less tedious laboratory work which is not easy in a provincial hospital. -
Nutritional Dermatoses in the Hospitalized Patient
HOSPITAL CONSULT IN PARTNERSHIP WITH THE SOCIETY FOR DERMATOLOGY HOSPITALISTS Nutritional Dermatoses in the Hospitalized Patient Melissa Hoffman, MS; Robert G. Micheletti, MD; Bridget E. Shields, MD Nutritional deficiencies may arise from inadequate nutrient intake, abnormal nutrient absorption, or improper nutrient PRACTICE POINTS utilization.4 Unfortunately, no standardized algorithm for • Nutritional deficiencies are common in hospitalized screening and diagnosing patients with malnutrition exists, patients and often go unrecognized. making early physical examination findings of utmost • Awareness of the risk factors predisposing patients importance. Herein, we present a review of acquired nutri- to nutritional deficiencies and the cutaneous manifes- tional deficiency dermatoses in the inpatient setting. tations associated with undernutrition can promote copy early diagnosis. Protein-Energy Malnutrition • When investigating cutaneous findings, undernutri- tion should be considered in patients with chronic Protein-energy malnutrition (PEM) refers to a set of infections, malabsorptive states, psychiatric illness, related disorders that include marasmus, kwashiorkor and strict dietary practices, as well as in those using (KW), and marasmic KW. These conditions frequently are certain medications. seen in developing countries but also have been reported 5 • Prompt nutritional supplementation can prevent patient in developed nations. Marasmus occurs from a chronic morbidity and mortality and reverse skin disease. deficiencynot of protein and calories. Decreased insulin pro- duction and unopposed catabolism result in sarcopenia and loss of bone and subcutaneous fat.6 Affected patients include children who are less than 60% ideal body weight Cutaneous disease may be the first manifestation of an underlying nutri- 7 tional deficiency, highlighting the importance of early recognition by der- (IBW) without edema or hypoproteinemia. -
Vitamin B12 and Methylmalonic Acid Testing AHS – G2014
Corporate Medical Policy Vitamin B12 and Methylmalonic Acid Testing AHS – G2014 File Name: vitamin_b12_and_methylmalonic_acid_testing Origination: 1/1/2019 Last CAP Review: 02/2021 Next CAP Review: 02/2022 Last Review: 02/2021 Description of Procedure or Service Vitamin B12, also known as cobalamin, is a water-soluble vitamin required for proper red blood cell formation, key metabolic processes, neurological function, and DNA regulation and synthesis. Hematologic and neuropsychiatric disorders caused by a deficiency in B12 can often be reversed by early diagnosis and prompt treatment (Oh & Brown, 2003). Methylmalonic acid is produced from excess methylmalonyl-CoA that accumulates when Vitamin B12 is unavailable and is considered an indicator of functional B12 deficiency (Sobczynska- Malefora et al., 2014). Holotranscobalamin (holoTC) is the metabolically active fraction of B12 and is an emerging marker of impaired vitamin B12 status (Langan & Goodbred, 2017). ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for Vitamin B12 and Methylmalonic Acid Testing when it is determined the medical criteria or reimbursement guidelines below are met Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Vitamin B12 and Methylmalonic Acid Testing is covered 1. Reimbursement for vitamin B12 testing is allowed in individuals being evaluated for clinical manifestations of Vitamin B12 deficiency including: A. -
Human Vitamin and Mineral Requirements
Human Vitamin and Mineral Requirements Report of a joint FAO/WHO expert consultation Bangkok, Thailand Food and Agriculture Organization of the United Nations World Health Organization Food and Nutrition Division FAO Rome The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concern- ing the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing and Multimedia Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] © FAO 2001 FAO/WHO expert consultation on human vitamin and mineral requirements iii Foreword he report of this joint FAO/WHO expert consultation on human vitamin and mineral requirements has been long in coming. The consultation was held in Bangkok in TSeptember 1998, and much of the delay in the publication of the report has been due to controversy related to final agreement about the recommendations for some of the micronutrients. A priori one would not anticipate that an evidence based process and a topic such as this is likely to be controversial. -
Folate and Vitamin B12: Function and Importance in Cognitive Development Aron M
Folate, Vitamin B12 and Brain Bhutta ZA, Hurrell RF, Rosenberg IH (eds): Meeting Micronutrient Requirements for Health and Development. Nestlé Nutr Inst Workshop Ser, vol 70, pp 161–171, Nestec Ltd., Vevey/S. Karger AG., Basel, © 2012 Folate and Vitamin B12: Function and Importance in Cognitive Development Aron M. Troen Nutrition and Brain Health Laboratory, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel Abstract The importance of the B vitamins folate and vitamin B12 for healthy neurological develop- ment and function is unquestioned. Folate and vitamin B12 are required for biological methylation and DNA synthesis. Vitamin B12 also participates in the mitochondrial catabo- lism of odd-chain fatty acids and some amino acids. Inborn errors of their metabolism and severe nutritional deficiencies cause serious neurological and hematological pathology. Poor folate and vitamin B12 status short of clinical deficiency is associated with increased risk of cognitive impairment, depression, Alzheimer’s disease and stroke among older adults and increased risk of neural tube defects among children born to mothers with low folate status. Folate supplementation and food fortification are known to reduce incident neural tube defects, and B vitamin supplementation may have cognitive benefit in older adults. Less is known about folate and vitamin B12 requirements for optimal brain devel- opment and long-term cognitive health in newborns, children and adolescents. While increasing suboptimal nutritional status has observed benefits, the long-term effects of high folate intake are uncertain. Several observations of unfavorable health indicators in children and adults exposed to high folic acid intake make it imperative to achieve a more precise definition of folate and B12 requirements for brain development and function. -
The Clinical Importance of Vitamin B12
Open Access Austin Journal of Nutrition & Metabolism Mini Review The Clinical Importance of Vitamin B12 Pereira DSR1* and Monteiro MN2 1Department of Nutrition and Metabolism, Universidade Abstract Federal do Amapá, Colegiado de Farmácia, Campus Vitamin B12 is co-factor of enzymes (for example, methionine synthase Universitário Marco Zero do Equador, Brazil and methylmalonyl-CoA mutase) which are responsible for catalyzing important 2Department of Nutrition and Metabolism, Universidad biochemical reactions in the human organism. Very high doses of vitamin B12 Politécnica y Artística del Paraguay (UPAP), Paraguay (milligrams or grams) have medical applications such as cyanide poisoning *Corresponding author: Ricardo de Souza Pereira, antidote, gastrointestinal disorders, asthma, migraine, stroke prevention and Universidade Federal do Amapá, Colegiado de Farmácia, neurological disorders (Alzheimer’s and Parkinson’s disease). Campus Universitário Marco Zero do Equador, Rod. Keywords: Vitamin B12; Cyanocobalamin; Gastritis; Pernicious Anemia; Juscelino Kubitschek, KM-02, Jardim Marco Zero, GERD; Gastroesophageal Reflux Disease; Cerebrovascular Accident; Beriberi; CEP68.902-280, Macapá, AP, Brazil Scurvy; Pellagra; Pernicious Anemia; Cyanide Intoxication; Hydroxocobalamin; Received: September 09, 2019; Accepted: October 15, Methylcobalamin; Hydroxycobalamin; Pain; Chronic Pain; Neuropathy; Low 2019; Published: October 22, 2019 Back Pain; Parkinson Disease; Alzheimer Disease Introduction • Loss of appetite. What are vitamins? • Pale skin. Vitamins are organic chemical compounds, ie compounds • Concentration problems. containing carbon. Such substances are necessary for metabolism • Shortness of breath, especially during exercise. and therefore are essential nutrients to sustain life. Most vitamins are obtained from food. Vitamins are water-soluble (vitamins B, C) or • Red and swollen tongue or bleeding gums. fat-soluble (vitamins K, E, D and A).