Nei Mongol, China) and the Premolar Morphology of Anagalidan Mammals at a Crossroads

Total Page:16

File Type:pdf, Size:1020Kb

Nei Mongol, China) and the Premolar Morphology of Anagalidan Mammals at a Crossroads diversity Article A Gliriform Tooth from the Eocene of the Erlian Basin (Nei Mongol, China) and the Premolar Morphology of Anagalidan Mammals at a Crossroads Łucja Fostowicz-Frelik 1,2,3,* , Qian Li 1,2 and Anwesha Saha 3 1 Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Anthropology, Chinese Academy of Sciences, 142 Xizhimenwai Ave., Beijing 100044, China; [email protected] 2 CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 3 Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-6978-892 Received: 25 October 2020; Accepted: 3 November 2020; Published: 5 November 2020 Abstract: The middle Eocene in Nei Mongol (China) was an interval of profound faunal changes as regards the basal Glires and gliriform mammals in general. A major diversification of rodent lineages (ctenodactyloids) and more modern small-sized lagomorphs was accompanied by a decline of mimotonids (Gomphos and Mimolagus) and anagalids. The latter was an enigmatic group of basal Euarchontoglires endemic to China and Mongolia. Here, we describe the first anagalid tooth (a P4) from the Huheboerhe classic site in the Erlian Basin. The tooth, characterized by its unique morphology intermediate between mimotonids and anagalids is semihypsodont, has a single buccal root typical of mimotonids, a large paracone located anteriorly, and a nascent hypocone, characteristic of advanced anagalids. The new finding of neither an abundant nor speciose group suggests a greater diversity of anagalids in the Eocene of China. This discovery is important because it demonstrates the convergent adaptations in anagalids, possibly of ecological significance. Keywords: Euarchontoglires; Anagalidae; dental morphology; Eocene; Irdinmanhan; Nei Mongol 1. Introduction Glires (rodents and lagomorphs) is the most numerous clade of Euarchontoglires which, in turn, is one of the four main clades of placental mammals, recognized on the basis of molecular and morphological data—e.g., [1–3]. The “basal Glires” is an operational term for a paraphyletic group of primitive members of the clade, which do not display clear rodent or lagomorph synapomorphies. However, this group can be partitioned into simplicidentates (Eurymylidae) and duplicidentates (Mimotonidae), based on the number of incisors [4–6]. The basal Glires usually cluster in the phylogenetic analyses with Anagalidae [4,7], an enigmatic grouping of basal Euarchontoglires. The concept of “Anagalida” was proposed originally by Szalay and McKenna [8] as including Anagalidae, Pseudictopidae, Zalambdalestidae, and possibly, Didymoconidae; later emended by the addition of Macroscelida and Lagomorpha [9]. Macroscelida in the light of molecular data are considered Afrotheria [10]; thus, the Anagalida sensu McKenna [9] are now disproved. Meng and Wyss [11] defined the term “Gliriformes” as all taxa are phylogenetically closer to Glires than to any other Recent placental group—a notion endorsed, e.g., by Missiaen and Smith [12]. Whether Anagalidae themselves form a monophyletic group or are also a paraphyletic group is still a matter of debate [13]. Nevertheless, with respect to the cranial and especially dental morphology, Diversity 2020, 12, 420; doi:10.3390/d12110420 www.mdpi.com/journal/diversity Diversity 2020, 12, x FOR PEER REVIEW 2 of 8 Diversity 2020, 12, 420 2 of 8 morphology, they can be viewed as a morphological transitional zone in the morphospace between the basal primates and scandentians on one side and basal Glires on the other, but they are closer to theythe last can group be viewed [13]. as a morphological transitional zone in the morphospace between the basal primates and scandentiansAll representatives on one sideof Anagalidae and basal Gliresand almost on the all other, early but Glires they are closerknown to exclusively the last group from [13 the]. PaleogeneAll representatives of Asia (mainly of Anagalidaefrom China) and with almost the only all earlyexception Glires of are the known rodentiaform exclusively Alagomyidae from the Paleogenelineage which of Asia is (mainlyalso known from China)from North with the America only exception [14]. Most of the anagalid rodentiaform taxa are Alagomyidae restricted lineagespatio- whichtemporally is also to known the Paleocene from North of southern America and [14 central]. Most China anagalid [13,15] taxa. The are restrictedEocene representatives spatio-temporally were toconfined the Paleocene to northern of southern China andand centralMongolia China [13,16 [13–,1518]]. and The their Eocene findings representatives are scarce. were Thus, confined any new to northerndiscovery China of this and enigmatic Mongolia group [13,16 –is18 of] andconsiderable their findings interest are scarce.to our Thus,understanding any new discovery of evolution of this of enigmaticgliriform mammals. group is of considerable interest to our understanding of evolution of gliriform mammals. HereHere wewe presentpresent anan upperupper premolarpremolar ofof anan unknownunknown genusgenus andand speciesspecies ofof thethe anagalidanagalid branchbranch ofof thethe EuarchontogliresEuarchontoglires fromfrom thethe middlemiddle EoceneEocene (Irdinmanhan(Irdinmanhan AsianAsian LandLand MammalMammal Age)Age) HuheboerheHuheboerhe localitylocality in in the the Erlian Erlian Basin, Basin, Nei Nei Mongol, Mongol, China. China. The specimenThe specimen shows shows strong strong similarities simila bothrities to Eoceneboth to representativesEocene representatives of basal Gliresof basal and Glires some and more some evolved more Anagalidae.evolved Anagalidae. 2.2. MaterialsMaterials andand MethodsMethods TheThe isolatedisolated gliriformgliriform premolarpremolar (IVPP(IVPP V26960)V26960) isis housedhoused inin thethe collectioncollection ofof thethe InstituteInstitute ofof VertebrateVertebrate Paleontology Paleontology andand PaleoanthropologyPaleoanthropology ofof thetheChinese Chinese AcademyAcademy ofof Sciences,Sciences, Beijing,Beijing, ChinaChina (IVPP).(IVPP). TheThe toothtooth waswas examinedexamined withwith aa scanningscanning microscopemicroscope JSMJSM 61006100 (at(at thethe IVPP).IVPP). TerminologyTerminology ofof dentaldental structuresstructures followsfollows MengMeng andand WyssWyss [ 11[11]]. GeologicalGeological setting:setting: The The tooth tooth was was found found at at the the Huheboerhe Huheboerhe localit localityy (Figure (Figure 1)1, ),which which lies lies ca. ca. 37 37km km SW SW of ofErenhot Erenhot (Nei (Nei Mongol, Mongol, China), China), close close to to the the China/Mongolia China/Mongolia boundary [[19]19].. The sitesite isis locatedlocated atat thethe “Huhebolhe“Huhebolhe CliCliff”ff”( (sensusensuRussell Russell andand ZhaiZhai [[20]20])) andand isis alsoalso knownknown asas “Huhe“Huhe Bulak”Bulak” oror “locality“locality 7 mi7 mi west west and and southwest southwest of Camp of Camp Margetts”, Margetts” as marked, as duringmarked the during Central the Asiatic Cent Expeditionral Asiatic (CAE)Expedition led by (CAE) the American led by Museumthe American of Natural Museum History of (AMNH)Natural inHistory 1930 [19 (AMNH)]. Paleogeographically, in 1930 [19]. HuheboerhePaleogeographically, is located Huheboerhe in the Erlian is Basin located [21, 22in], the one Erlian of non-marine Basin [21,22] basins, one of of late non Mesozoic-marine originbasins inof northeasternlate Mesozoic China. origin Thein northeastern Huheboerhe China. section The includes Huheboerhe three sediment section includes series divided three sediment by upper series and lowerdivided hiatuses: by upper the and “upper lower beds”, hiatuses: consisting the “upper of a lower beds” part, consisting of the Irdin of a Manhalower part Formation of the Irdin (IM-1) Manha and underlyingFormation upper(IM-1) bedsand underlying of the Arshanto upper Formation beds of the (AS), Arshanto the “middle Formation beds” including(AS), the deposits“middle ofbeds” the Arshantoincluding Formation, deposits of and the the Arshanto “lower beds” Formation, consisting and of thethe upper“lower Nomogen beds” consisting Formation of sediments the upper of theNomogen Bumbanian Formation Asian Landsediments Mammal of the Age Bumbanian [23]. Asian Land Mammal Age [23]. FigureFigure 1.1. Anagalid-bearingAnagalid-bearing localitieslocalities inin NeiNei MongolMongol (gray(gray area),area), China.China. ((AA).). SchematicSchematic mapmap ofof ChinaChina withwith thethe approximate approximate location location of of the the Erlian Erlian Basin Basin marked marked by by red red circle. circle. (B ).(B Localities). Localities in thein the vicinity vicinity of Erenhot,of Erenhot, which which yielded yielded anagalid anagalid remains remains (yellow (yellow dots). (( dots).B), after ((B Fostowicz-Frelik), after Fostowicz et al.-Frelik [24], modified).et al. [24], modified). Diversity 2020, 12, 420 3 of 8 Diversity 2020, 12, x FOR PEER REVIEW 3 of 8 The fossil mammal fauna of Huheboerhe is rich; the lower beds yielded many Gomphos The fossil mammal fauna of Huheboerhe is rich; the lower beds yielded many Gomphos specimens [25], the Arshantan sediments include numerous remains of perissodactyls [19,23], and the specimens [25], the Arshantan sediments include numerous remains of perissodactyls [19,23], and Irdinmanhan deposits yielded, among others, artiodactyls, primates, cricetids, ischyromyids, many the Irdinmanhan deposits yielded, among others, artiodactyls, primates,
Recommended publications
  • Asian Paleocene-Early Eocene Chronology and Biotic Events
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, June 5th – 8th Asian Paleocene-Early Eocene Chronology and biotic events Suyin Ting1, Yongsheng Tong2, William C. Clyde3, Paul L.Koch4, Jin Meng5, Yuanqing Wang2, Gabriel J. Bowen6, Qian Li2, Snell E. Kathryn4 1 LSU Museum of Natural Science, Baton Rouge, LA 70803, USA 2 Institute of Vert. Paleont. & Paleoanth., CAS., Beijing 100044, China 3 University of New Hampshire, Durham, NH 03824, USA 4 University of California Santa Cruz, Santa Cruz, CA 95064, USA 5 American Museum of Natural History, New York, NY 10024, USA 6 Purdue University, West Lafayette, IN 47907, USA Biostratigraphic, chemostratigraphic, and magnetostratigraphic studies of the Paleocene and early Eocene strata in the Nanxiong Basin of Guangdong, Chijiang Basin of Jiangxi, Qianshan Basin of Anhui, Hengyang Basin of Hunan, and Erlian Basin of Inner Mongolia, China, in last ten years provide the first well-resolved geochronological constrains on stratigraphic framework for the early Paleogene of Asia. Asian Paleocene and early Eocene strata are subdivided into four biochronological units based on the fossil mammals (Land Mammal Ages). From oldest to youngest, they are the Shanghuan, the Nongshanian, the Gashatan, and the Bumbanian Asian Land Mammal Ages (ALMA). Recent paleomagnetic data from the Nanxiong Basin indicate that the base of the Shanghuan lies about 2/3 the way up Chron C29r. Nanxiong data and recent paleomagnetic and isotopic results from the Chijiang Basin show that the Shanghuan-Nongshanian ALMA boundary lies between the upper part of Chron C27n and the lower part of Chron C26r, close to the Chron C27n-C26r reversal.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Paleogene and Neogene Time Scale of GTS 2012 Paleogene Neogene N
    Paleogene and Neogene Time Scale of GTS 2012 Paleogene Neogene N. Vandenberghe 1, F.J. Hilgen 2 and R.P. Speijer 3 F.J. Hilgen 1, L.J. Lourens 2 and J.A. Van Dam 3 1. Department of Earth and Environmental Sciences, K. U. Leuven, Celestijnenlaan 200E, B - 3001 Leuven, Belgium, [email protected] 1. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands, [email protected] 2. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands, [email protected] 2. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3508 TA Utrecht, The Netherlands, [email protected] 3. Department of Earth and Environmental Sciences, K. U. Leuven, Celestijnenlaal 200E, B - 3001 Leuven, Belgium, [email protected] 3. Institut Català de Paleontologia Miquel Crusafont (ICP), Campus de la UAB, Mòdul ICP, E-08193 cerdanyola del Vallès, Spain, [email protected] Of the 9 Paleogene stages, only 3 remain to be formally defined: the Bartonian and Priabonian stages of upper Paleogene Time Scale Eocene and the Chattian (base of upper Oligocene). Larger 18 13 AGE Epoch/Age Polarity Mega- Dinoflagellate Cysts North American O C AGE -1.0 -0.5 -0.5 Of the 8 Neogene stages, only 2 remain to be formally defined: the Burdigalian and Langhian stages of lower and middle Mio- (Ma) Chron Cycles Planktonic Foraminifera Benthic Calcareous Nannofossils Radiolarians NALMA MP European Mammals ALMA SALMA 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 Age (Stage) (Ma) During the Paleogene, the global climate, being warm (Stage) Northwestern Europe Mammals other zones Foraminifera ELMA R T low latitude southern high latitude until the late Eocene, shows a significant cooling trend cene.
    [Show full text]
  • Convergent Evolution in the Euarchontoglires
    This is a repository copy of Convergent evolution in the Euarchontoglires. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133262/ Version: Published Version Article: Morris, Philip James Rencher, Cobb, Samuel Nicholas Frederick orcid.org/0000-0002- 8360-8024 and Cox, Philip Graham orcid.org/0000-0001-9782-2358 (2018) Convergent evolution in the Euarchontoglires. Biology letters. 2018036. ISSN 1744-957X https://doi.org/10.1098/rsbl.2018.0366 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Downloaded from http://rsbl.royalsocietypublishing.org/ on August 1, 2018 Evolutionary biology Convergent evolution in the rsbl.royalsocietypublishing.org Euarchontoglires Philip J. R. Morris1, Samuel N. F. Cobb2 and Philip G. Cox2 1Hull York Medical School, University of Hull, Hull HU6 7RX, UK Research 2Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK SNFC, 0000-0002-8360-8024; PGC, 0000-0001-9782-2358 Cite this article: Morris PJR, Cobb SNF, Cox PG. 2018 Convergent evolution in the Convergence—the independent evolution of similar phenotypes in distantly Euarchontoglires.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • A New Genus of Stem Lagomorph (Mammalia: Glires) from the Middle Eocene of the Erlian Basin, Nei Mongol, China
    Acta zoologica cracoviensia, 57(1-2): 29-42, Kraków, 31 December 2014 Ó Institute of Systematics and Evolution of Animals, Pol. Acad. Sci., Kraków doi:10.3409/azc.57_1-2.29 Zoobank Account:urn:lsid:zoobank.org:pub:22E831F0-4830-4649-9740-1BD6171983DD Anewgenusofstemlagomorph(Mammalia:Glires)fromthe MiddleEoceneoftheErlianBasin,NeiMongol,China £ucja FOSTOWICZ-FRELIK andQianLI Received: 15 October 2014. Accepted: 10 December 2014. Available online: 29 December 2014. FOSTOWICZ-FRELIK £., LI Q. 2014. A new genus of stem lagomorph (Mammalia: Glires) from the Middle Eocene of the Erlian Basin, Nei Mongol, China. Acta zool. cracov., 57(1-2): 29-42. Abstract. We report the discovery of Erenlagus anielae, a new genus and species of stem lagomorph from the lower part of the Middle Eocene Irdin Manha Formation at the Huhe- boerhe locality, Erlian Basin, Nei Mongol, China. The remains consist of isolated teeth; however, the material includes all loci except the incisors and P2. The new lagomorph is characterized by a small size and high degree of unilateral hypsodonty comparable to that of Aktashmys and slightly higher than that observed in the coeval and co-occurring Stre- nulagus. Further, it shows advanced root fusion, which exceeds even that in Gobiolagus. Although phylogenetic relationships of the Eocene lagomorphs from Asia are still not fully resolved, the dental characters of Erenlagus anielae suggest that it is most closely re- lated to Lushilagus danjingensis from the Middle Eocene of Henan, China and Ak- tashmys montealbus from the late Early Eocene of Kyrgyzstan. This stratigraphically well-constrained finding represents one of the lagomorph genera that appeared in the Eo- cene Glires paleobiodiversity reservoir, the Erlian Basin in Nei Mongol.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 06:41:35AM Via Free Access 268 Ge Et Al
    Contributions to Zoology, 84 (4) 267-284 (2015) Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha) Deyan Ge1, Lu Yao2, Lin Xia1, Zhaoqun Zhang3, Qisen Yang1, 4 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, China 2 Department of Anthropology, The Field Museum, Chicago, Illinois 60605, USA 3 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 4 Email: [email protected] Key words: centroid size, Leporidae, morphometry, Ochotonidae, phylogeny, skeletal features Abstract Discussion ...................................................................................... 278 Phylogenetic signals in skull shape evolution of lagomorphs at the generic level The intergeneric phylogeny of Lagomorpha had been controver- ......................................... 278 Morphological adaptation in the skull of lagomorphs sial for a long time before a robust phylogeny was reconstructed .. 278 based on seven nuclear and mitochondrial DNA sequences. How- Acknowledgements ...................................................................... 279 ever, skull morphology of several endemic genera remained References ...................................................................................... 280 poorly understood. The morphology of supraorbital processes in Appendices ....................................................................................
    [Show full text]
  • The Remarkable, Yet Not Extraordinary, Human Brain As a Scaled-Up Primate Brain and Its Associated Cost
    The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost Suzana Herculano-Houzel1 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; and Instituto Nacional de Neurociência Translacional, Instituto Nacional de Ciência e Tecnologia/Ministério de Ciência e Tecnologia, 04023-900, Sao Paulo, Brazil Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved April 12, 2012 (received for review February 29, 2012) Neuroscientists have become used to a number of “facts” about the The incongruity between our extraordinary cognitive abilities human brain: It has 100 billion neurons and 10- to 50-fold more glial and our not-that-extraordinary brain size has been the major cells; it is the largest-than-expected for its body among primates driving factor behind the idea that the human brain is an outlier, and mammals in general, and therefore the most cognitively able; an exception to the rules that have applied to the evolution of all it consumes an outstanding 20% of the total body energy budget other animals and brains. A largely accepted alternative expla- despite representing only 2% of body mass because of an increased nation for our cognitive superiority over other mammals has been metabolic need of its neurons; and it is endowed with an overde- our extraordinary brain size compared with our body size, that is, veloped cerebral cortex, the largest compared with brain size. our large encephalization quotient (8). Compared
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]