Structure-Function Relationships of the Nucleocapsid in Vesicular Stomatitis Virus

Total Page:16

File Type:pdf, Size:1020Kb

Structure-Function Relationships of the Nucleocapsid in Vesicular Stomatitis Virus Georgia State University ScholarWorks @ Georgia State University Chemistry Dissertations Department of Chemistry 12-10-2018 Structure-Function Relationships of the Nucleocapsid in Vesicular Stomatitis Virus Ryan Gumpper Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss Recommended Citation Gumpper, Ryan, "Structure-Function Relationships of the Nucleocapsid in Vesicular Stomatitis Virus." Dissertation, Georgia State University, 2018. https://scholarworks.gsu.edu/chemistry_diss/153 This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. STRUCTURE-FUNCTION RELATIONSHIPS OF THE NUCLEOCAPSID IN VESICULAR STOMATITIS VIRUS by RYAN GUMPPER Under the Direction of Ming Luo, PhD ABSTRACT Understanding the basic structure-function relationships that guide the biology of various pathogenic viruses is the cornerstone in the development of antiviral therapies. One group of highly pathogenic viruses, which desperately needs novel antiviral therapies, are Negative Strand RNA viruses. This group of viruses contains some of the most highly pathogenic and pandemic viruses known: like Ebola, Influenza, Marburg, and Rabies viruses. Between 2013 and 2016, during the latest endemic outbreak of Ebola, the World Health Organization estimated that it caused over 11,000 deaths. However, without in-depth understanding of the basic science that guides the replication of these viruses, design of targeted therapies is hard. Utilizing the model virus for Negative Strand RNA viruses, Vesicular Stomatitis virus, this work studies the structure-function relationships of the nucleocapsid protein. Since the nucleocapsid encapsulates the virus’ genomic material this protein is increasingly important study. Furthermore, the virus cannot undergo replication if the polymerase does not recognize the nucleocapsid for viral RNA synthesis. This work takes a three-pronged approach when investigating the nucleocapsid: development of a novel antiviral to target the nucleocapsid, the use of structural information to study the possible interactions between the nucleocapsid and the polymerase, and a study of the genomic constraints placed on polymerase activity by the nucleocapsid. Utilizing an already characterized class of compounds, polyamides, we showed that it is possible to target the genomic RNA in the nucleocapsid of a Negative Strand RNA virus and inhibit viral replication. This is the first known instance of this occurring in Negative Strand RNA viruses. To examine the structural interactions between the nucleocapsid and the polymerase a flexible loop was hypothesized to be integral toward the formation of an active polymerase complex. Alanine scanning deletions yielded an abolishment in polymerase activity, which could be restored after compensatory mutations were allowed to occur. Finally, the nucleotide content sequestered within the nucleocapsid has a direct effect on the processivity of the polymerase complex, and ushers in a paradigm changing model for how one examines Negative Strand RNA virus activity and the evolutionary constraints placed on the genomic RNA. Merging the findings of these studies together, understanding the structure-function relationships of the nucleocapsid can yield a lot of knowledge about the viral life-cycle of the entire Negative Stranded RNA virus family. INDEX WORDS: Negative Strand RNA virus, Nucleocapsid, Antiviral therapies, Vesicular Stomatitis Virus STRUCTURE-FUNCTION RELATIONSHIPS OF THE NUCLEOCAPSID IN VESICULAR STOMATITIS VIRUS by RYAN GUMPPER A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2018 Copyright by Ryan Gumpper 2018 STRUCTURE-FUNCTION RELATIONSHIPS OF THE NUCLEOCAPSID IN VESICULAR STOMATITIS VIRUS by RYAN GUMPPER Committee Chair: Ming Luo Committee Members: Jenny Yang Gregory Poon Electronic Version Approved: Office of Graduate Studies College of Arts and Sciences Georgia State University November 2018 iv DEDICATION I would like to dedicate this dissertation to my Mom, Dad, Brother, and fiancé, Suela. Without the love and support of all of you, none of this would be possible. v ACKNOWLEDGEMENTS First, I would like to acknowledge my advisor, Dr. Ming Luo, for always leading by example and teaching me what it means to be a true scientist. I would like to thank him especially for taking me into his lab when I thought my entire PhD was in jeopardy and giving me the chance to succeed. Furthermore, I would also like to thank him for the ongoing moral and academic support through this process and allowing me the space to explore new ideas not only scientifically, but also personally. Without his help, none of this would have been possible. I would also like to thank both of my committee members Dr. Gregory Poon and Dr. Jenny Yang. To Dr. Yang whom I have interacted with since my first day in graduate school in her Protein Structure and Function class. From being on my oral exam committee, to putting together the wonderful joint group meetings, and who has offered nothing but amazing scientific and professional advice all the way through my graduate career. Also, to Dr. Gregory Poon who has offered a plethora of moral support and has offered many insights into the ins-and-outs behind science and the scientific process. I always know that I can come to you for your sage advice. I would also like to thank Dr. Jiafeng Geng and Dr. Kednerlin Dornevil, both members of my former lab. Not only did both of you teach me all of the necessary laboratory techniques but were also an invaluable part of my growth as a scientist when I first started graduate school. As a freshmen graduate student, having senior members take you under their wing, like both of you did, did more to shape my career than you can imagine. Also, to the current members of my lab, especially Weike (Eric) Li and Ross Terrell. To all the inspiring conversations, both scientific vi and non-scientific while toiling away for the endless hours in lab. Both of your friendships mean the world to me and helped keep me sane when times were tough. I would also like to thank my family: my Mom, Dad, and Brother. Being far apart these past 5 years has been tough, but without your constant love and support throughout this entire process I surely wouldn’t have been able to do it. All of you have raised me to be an independent thinker and a hard worker, and without these traits which have been so ingrained into the fabric of my being I would not be where I am today. Thank you for traveling all those times to see me, as graduate school gets very busy at times, and I am eternally grateful for all your sacrifices in time, money, and heartache at being far away. Sometimes achieving something worth doing takes a lot of sacrifice but know that my love for you all is unconditional, and I look forward to the days we can spend more time together. Without you guys as my foundation, I wouldn’t have been able to build the tower that you see today. I love you guys and look forward to the future! Finally, I would like to especially thank my partner in crime, the love of my life, and other-half, my fiancé Suela. To this day, your love and devotion continues to inspire me to reach to new heights. Without you by my side every step of the way life would not be as happy, fulfilling, or fun. Growing up together through graduate school will be a time in our lives that we will always cherish. It was during this time that our relationship blossomed, and our love grew to enormities that I could never comprehend to exist. Through all the failed experiments, the late nights and early mornings in the lab, and plenty of tears you have been my rock. Every day with you is filled with adventure and love, and without your emotional and professional support I would not be half the man that I am today. This journey has not been easy, and the road has not been straight, but I cannot think of any other person I would rather have by my side than you. vii Thank you for being you and I will continue to love you as this next exciting step in our lives begins. I love you, and I always will—here’s to the next adventure. viii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ V LIST OF TABLES ....................................................................................................... XIII LIST OF FIGURES ..................................................................................................... XIV LIST OF ABBREVIATIONS ..................................................................................... XVI 1 GENERAL INTRODUCTION: WHY STUDY VIRUSES? .................................. 1 1.1 General History of Virology ............................................................................... 1 1.2 Viral Evolution, Classification System, and Antiviral Therapies ................... 3 1.2.1 Viral Evolution ................................................................................................ 4 1.2.2 Viral Classification System ............................................................................. 7 1.2.3 Antiviral Therapies ......................................................................................
Recommended publications
  • Historical Overview 1
    Historical Overview 1 Contents 1.1 Since When Have We Known of Viruses? ................................................ 3 1.2 What Technical Advances Have Contributed to the Development of Modern Virology? .......................................................................... 4 1.2.1 Animal Experiments Have Provided Important Insights into the Pathogenesis of Viral Diseases .................................................... 5 1.2.2 Cell Culture Systems Are an Indispensable Basis for Virus Research ........... 6 1.2.3 Modern Molecular Biology Is also a Child of Virus Research ................... 8 1.3 What Is the Importance of the Henle–Koch Postulates? .................................. 9 1.4 What Is the Interrelationship Between Virus Research, Cancer Research, Neurobiology and Immunology? .......................................................... 10 1.4.1 Viruses are Able to Transform Cells and Cause Cancer .......................... 10 1.4.2 Central Nervous System Disorders Emerge as Late Sequelae of Slow Viral Infections ........................................................................... 12 1.4.3 Interferons Stimulate the Immune Defence Against Viral Infections . .. .. .. .. 12 1.5 What Strategies Underlie the Development of Antiviral Chemotherapeutic Agents? . 13 1.6 What Challenges Must Modern Virology Face in the Future? .. ... ... ... ... ... ... ... ... 13 Further Reading ................................................................................... 14 1.1 Since When Have We Known of Viruses? “Poisons” were
    [Show full text]
  • Module1: General Concepts
    NPTEL – Biotechnology – General Virology Module1: General Concepts Lecture 1: Virus history The history of virology goes back to the late 19th century, when German anatomist Dr Jacob Henle (discoverer of Henle’s loop) hypothesized the existence of infectious agent that were too small to be observed under light microscope. This idea fails to be accepted by the present scientific community in the absence of any direct evidence. At the same time three landmark discoveries came together that formed the founding stone of what we call today as medical science. The first discovery came from Louis Pasture (1822-1895) who gave the spontaneous generation theory from his famous swan-neck flask experiment. The second discovery came from Robert Koch (1843-1910), a student of Jacob Henle, who showed for first time that the anthrax and tuberculosis is caused by a bacillus, and finally Joseph Lister (1827-1912) gave the concept of sterility during the surgery and isolation of new organism. The history of viruses and the field of virology are broadly divided into three phases, namely discovery, early and modern. The discovery phase (1886-1913) In 1879, Adolf Mayer, a German scientist first observed the dark and light spot on infected leaves of tobacco plant and named it tobacco mosaic disease. Although he failed to describe the disease, he showed the infectious nature of the disease after inoculating the juice extract of diseased plant to a healthy one. The next step was taken by a Russian scientist Dimitri Ivanovsky in 1890, who demonstrated that sap of the leaves infected with tobacco mosaic disease retains its infectious property even after its filtration through a Chamberland filter.
    [Show full text]
  • The Origin and Evolution of Viruses
    Mini Review Agri Res & Tech: Open Access J Volume 21 Issue 5 - June 2019 Copyright © All rights are reserved by Luka AO Awata DOI: 10.19080/ARTOAJ.2019.21.556181 The Central Question in Virology: The Origin and Evolution of Viruses Luka AO Awata1*, Beatrice E Ifie2, Pangirayi Tongoona2, Eric Danquah2, Samuel Offei2 and Phillip W Marchelo D’ragga3 1Directorate of Research, Ministry of Agriculture and Food Security, South Sudan 2College of Basic and Applied Sciences, University of Ghana, Ghana 3Department of Agricultural Sciences, University of Juba, South Sudan Submission: June 01, 2019; Published: June 12, 2019 *Corresponding author: Luka AO Awata, Directorate of Research, Ministry of Agriculture and Food Security, Ministries Complex, Parliament Road, P.O. Box 33, Juba, South Sudan Abstract Viruses are major threats to both animals and plants worldwide. A virus exists as a set of one or more nucleic acid molecules normally encased in a protective coat of protein or lipoprotein. It is able to replicate itself within suitable host cells, causing diseases to plants and animals. While the three domains of life trace their linages back to a single protein (the Last Universal Cellular Ancestor (LUCA), information on parental molecule from which all viruses descended is inadequate. Structural analyses of capsid proteins suggest that there is no universal viral protein and different types of virions are mostly formed independently. As a result, it is impossible to neither include viruses in the Tree of Life of LUCA nor to draw a universal tree of viruses analogous to the tree of life. Although the concepts on the origin and evolution of viruses are well documented, the structure and biological activities of viruses are paradoxical.
    [Show full text]
  • 1 Chapter I Overall Issues of Virus and Host Evolution
    CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology.
    [Show full text]
  • Department of Microbiology MCB 315 Introductory Virology
    EDO UNIVERSITY IYAMHO Department of Microbiology MCB 315 Introductory Virology Instructor: Ezeanya Chinyere, email: [email protected] Lectures: Tuesdays, 8am – 10am, NLT4, Faculty of Science building Lectures: Wednesdays, 10am-11am, NLT 3, Faculty of Science building Office hours: Mondays, 12noon to 1pm (just before class), Office: Room 7, Faculty building Description: This course is intended to give the students the basic and fundamental knowledge of the field of virology. This course covers introductory topics such as: History of virology, General characteristics of plant, animal and bacterial viruses; Viral structure and morphology; Cultivation of viruses; Viral replication; Viral detection and cytopathic effects; Virus classification; Viral assay and Purification. Prerequisites: Students should be accustomed with basic concepts of microbiology (e.g., different types of microorganism and their diversity) and basic properties of viruses (e.g., obligate intracellular parasitic nature). Students are also expected to be familiar with basic concepts of imperative viral taxonomy. Assignments: There will be 5 homework assignments throughout the course in addition to 2 Tests and a Final Examination. Home works are due on the due date and submitted electronically. Home works are organized and structured as trainings and are meant to serve as studying material for the students. There will also be 3 class exercises in groups. The goal of class exercises is to have the students’ tryout with very technical aspects of the course. Grading: We will assign 10% of this class grade to home works, 20% for the mid-term test and 70% for the final exam. The Final exam is all-encompassing. INTRODUCTORY VIROLOGY by EZEANYA.C.
    [Show full text]
  • Here, There, and Everywhere: the Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses
    viruses Review Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses Natalia Ingrid Oliveira Silva, Jaqueline Silva de Oliveira, Erna Geessien Kroon , Giliane de Souza Trindade and Betânia Paiva Drumond * Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; [email protected] (N.I.O.S.); [email protected] (J.S.d.O.); [email protected] (E.G.K.); [email protected] (G.d.S.T.) * Correspondence: [email protected] Abstract: The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses. Keywords: Orthopoxvirus; Poxviridae; zoonosis; Monkeypox virus; Cowpox virus; Vaccinia virus; host range; wild and domestic animals; emergent viruses; outbreak Citation: Silva, N.I.O.; de Oliveira, J.S.; Kroon, E.G.; Trindade, G.d.S.; Drumond, B.P. Here, There, and Everywhere: The Wide Host Range 1. Poxvirus and Emerging Diseases and Geographic Distribution of Zoonotic diseases, defined as diseases or infections that are naturally transmissible Zoonotic Orthopoxviruses. Viruses from vertebrate animals to humans, represent a significant threat to global health [1].
    [Show full text]
  • Ecology of Marine Viruses
    UNIVERSITY OF HAWAI‘I AT HILO ◆ HOHONU 2020 ◆ VOL. 18 role in the health of our oceans. The ecological roles and behaviors of marine viruses drive evolu- Rachel Willard tion, shape populations and ecosystems, and with English 225 advances in technology, can potentially be used in Abstract the near future to increase the health of our oceans Marine viruses have played a critical role in and prevent marine life and habitat loss caused by the development of life on our planet. They are of- climate change. ten seen negatively as disease pathogens, but their About Marine Viruses ecological roles and behaviors have played a ma- Viruses are found virtually everywhere on the jor role in the evolution of all species, they have planet and are abundant around any forms of life. shaped populations and ecosystems, and have many important uses and relationships with their of energy consumption, being capable of growth, hosts. Their vast abundance and diversity have adapting to surroundings, responding to external shaped whole ecosystems and drive population forces, reproducing, and most importantly, be- rates in organisms such as marine microbes to cor- ing composed of at least a single cell (Lloyd 11). als and pilot whales. They have been seen to have a Following these rules, these loose strands of ge- mutualistic symbiotic relationship with corals, sea slugs, and many other marine organisms. Marine but they are the most abundant and diverse bio- viruses reduce the harmful plankton populations logical entities in the ocean (Suttle 2007). In the in algal blooms. They play a very important role 1980s, scientists estimated the amount of marine in the stabilization of ocean ecosystems through viral bodies in one milliliter of seawater to be well biogeochemical and nutrient cycling.
    [Show full text]
  • The History of Virology – the Scientific Study of Viruses and Therefore the Infections- Research Analysis of Virology and Retr
    Current research in Virology & Retrovirology 2021, Vol.2, Issue 3 Short Communication The history of virology – the scientific study of viruses and therefore the infections- Research Analysis of Virology and Retrovirology Kwanighee Yonsei University, South Korea cholerae. Bacteriophages were heralded as a possible treatment for Copyright: 2021 Kwanighee . This is an open-access article distributed diseases like typhoid and cholera, but their promise was forgotten under the terms of the Creative Commons Attribution License, which with the event of penicillin. Since the early 1970s, bacteria have permits unrestricted use, distribution, and reproduction in any medium, continued to develop resistance to antibiotics such as penicillin, provided the original author and source are credited. and this has led to a renewed interest in the use of bacteriophages to treat serious infections. Early research 1920–1940, D'Herelle Abstract travelled widely to market the utilization of bacteriophages within the treatment of bacterial infections. In 1928, he became professor The history of virology – the scientific study of viruses and therefore of biology at Yale and founded several research institutes. He was the infections they cause – began within the closing years of the convinced that bacteriophages were viruses despite opposition 19th century. Although Pasteur and Jenner developed the primary from established bacteriologists such as the Nobel Prize winner vaccines to guard against viral infections, they didn't know that Jules Bordet (1870–1961). Bordet argued that bacteriophages viruses existed. The first evidence of the existence of viruses came from experiments with filters that had pores sufficiently small to were not viruses but just enzymes released from "lysogenic" retain bacteria.
    [Show full text]
  • Brief History of Virology
    Brief History of Virology Viruses are still a major cause of most human diseases. We will begin of with a few examples of common viruses. One should note that viruses affect every " living" creature including bacterium, protozoa,and yeast. Animal viruses Plant viruses Other Rabies Tobacco Mosaic bacteirophage lambda Smallpox cucumber mosaic T-even phages Polio Brome Mosaic yeast viruses hepatitis A,B,C yellow Fever Scrapie ( prion) Herpes Mad Cow Disease ( prion) Foor and Mouth Disease Plant Viroids AIDS ( HIV) Hepatitis Delta. Human T-cell leukemia Note: Some of these viruses such as kuru are "slow-viruses," and are models for degenerative diseases: These are caused by prions. Alzheimer's disease may be of a similar origin. .Diabetes, and rheumatoid arthritis may be viral related. This is quite controversial. The majority of viral infections occur without any symptoms, they are subclinical. There may be virus replication without symptoms. In other cases virus replication always leads to disease, e.g. measles. Some viruses may cause more than one type of disease state ,e.g. measles, chicken pox. in other cases same symptoms may result from different virus infections ( hepatitis ). Viruses are: - submicroscopic, obligate intracellular parasites. - particles produced from the assembly of preformed components 1 - particles (virions) themselves do not grow or undergo division. - lacking the genetic information that encodes apparatus necessary for the generation of metabolic energy or for protein synthesis (ribosomes). They are therefore absolutely dependent on the host cell for this function - One view said that inside the host cell viruses are alive, whereas outside it they are merely complex assemblages of metabolically inert chemicals.
    [Show full text]
  • The Foundations of Virology: Discoverers and Discoveries
    BOOK REVIEW The Foundations are clear advantages to having the Hippocrates’ observations in 400 BCE hard copy in hand, in a place where it to the 2010 declaration of the global of Virology: can be picked up and absorbed a little eradication of rinderpest. Particularly Discoverers and at a time. given the origin of new, emerging, and Discoveries, The full title of the book reflects reemerging viral infections today, it is the content; it is a chronology of im- valuable to see pictures and stories to Inventors and ages of discoverers, developers, and remind us of the exceptional crossover Inventions, inventors, alongside their discoveries, between human and veterinary virolo- Developers and developments, and inventions. The gy. Because of the author’s longstand- book is physically laid out in a land- ing involvement in virology since the Technologies scape format, usually with multiple 1960s, his explanations for discover- Frederick A. Murphy photographs on each page, featuring ies of the past 5 decades provide a scientists, their institutions, spot maps unique sense of context. Infinity Publishing, West from major epidemics, electron mi- This visual account of history Conshohocken, Pennsylvania, crographs of then-emerging viruses, makes obvious the sparse involve- USA, 2012 and graphics from landmark publica- ment of women in virology until the ISBN-10: 0741473658 tions. Along the bottom of each page late 1900s. However, Murphy made ISBN-13: 978-0741473653 is printed in large font the year, names a good effort to acknowledge women of contributors, and their historic con- when possible. He also did a good job Pages: 536; Price US $119.95 tributions.
    [Show full text]
  • Virology and Viral Disease I
    WBV1 6/27/03 9:33 PM Page 1 Virology and Viral Disease I ✷ INTRODUCTION — THE IMPACT OF VIRUSES ON OUR VIEW OF LIFE PART ✷ AN OUTLINE OF VIRUS REPLICATION AND VIRAL PATHOGENESIS ✷ PATHOGENESIS OF VIRAL INFECTION ✷ VIRUS DISEASE IN POPULATIONS AND INDIVIDUAL ANIMALS ✷ VIRUSES IN POPULATIONS ✷ ANIMAL MODELS TO STUDY VIRAL PATHOGENESIS ✷ PATTERNS OF SOME VIRAL DISEASES OF HUMANS ✷ SOME VIRAL INFECTIONS TARGETING SPECIFIC ORGAN SYSTEMS ✷ PROBLEMS FOR PART I ✷ ADDITIONAL READING FOR PART I WBV1 6/27/03 9:33 PM Page 2 WBV1 6/27/03 9:33 PM Page 3 Introduction — The Impact of Viruses on our View of Life 1 CHAPTER ✷ The effect of virus infections on the host organism and populations — viral pathogenesis, virulence, and epidemiology ✷ The interaction between viruses and their hosts ✷ The history of virology ✷ Examples of the impact of viral disease on human history ✷ Examples of the evolutionary impact of the virus–host interaction ✷ The origin of viruses ✷ Viruses have a constructive as well as destructive impact on society ✷ Viruses are not the smallest self-replicating pathogens ✷ QUESTIONS FOR CHAPTER 1 The study of viruses has historically provided and continues to provide the basis for much of our most fundamental understanding of modern biology, genetics, and medicine. Virology has had an impact on the study of biological macromolecules, processes of cellular gene expression, mecha- nisms for generating genetic diversity, processes involved in the control of cell growth and develop- ment, aspects of molecular evolution, the mechanism of disease and response of the host to it, and the spread of disease in populations.
    [Show full text]
  • Introduction to Plant Viruses
    SECTIONI INTRODUCTION TO PLANT VIRUSES CHAPTER 1 What Is a Virus? This chapter discusses broad aspects of virology and highlights how plant viruses have led the subject of virology in many aspects. OUTLINE I. Introduction 3 V. Viruses of Other Kingdoms 20 II. History 3 VI. Summary 21 III. Definition of a Virus 9 IV. Classification and Nomenclature of Viruses 13 I. INTRODUCTION they do to food supplies has a significant indi- rect effect. The study of plant viruses has led Plant viruses are widespread and economi- the overall understanding of viruses in many cally important plant pathogens. Virtually all aspects. plants that humans grow for food, feed, and fiber are affected by at least one virus. It is the viruses of cultivated crops that have been most II. HISTORY studied because of the financial implications of the losses they incur. However, it is also impor- Although many early written and pictorial tant to recognise that many “wild” plants are records of diseases caused by plant viruses also hosts to viruses. Although plant viruses are available, they are do not go back as far as do not have an immediate impact on humans records of human viruses. The earliest known to the extent that human viruses do, the damage written record of what was very likely a plant Comparative Plant Virology, Second Edition 3 Copyright # 2009, Elsevier Inc. All rights reserved. 4 1. WHAT IS A VIRUS? virus disease is a Japanese poem that was writ- determining exactly what a virus was. In the latter ten by the Empress Koken in A.D.
    [Show full text]