Teaching Secondary School Mathematics Through Storytelling

Total Page:16

File Type:pdf, Size:1020Kb

Teaching Secondary School Mathematics Through Storytelling TEACHING SECONDARY SCHOOL MATHEMATICS THROUGH STORYTELLING by Chandra Balakrishnan B.A., Simon Fraser University 2000 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Faculty ofEducation © Chandra Balakrishnan 2008 SIMON FRASER UNIVERSITY Spring 2008 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission ofthe author. APPROVAL Name: Chandra Balakrishnan Degree: Master of Science Title of Thesis: Teaching Secondary School Mathematics Through Storytelling Examining Committee: Chair: Cecile Sabatier, Assistant Professor, Faculty of Education Peter Liljedahl, Assistant Professor, Faculty of Education Senior Supervisor Rina Zazkis, Professor, Faculty of Education Committee Member Stephen Campbell, Assistant Professor, Faculty of Education External Examiner Date Defended/Approved: ~Q...Iilt'L...n...30"\.J..........~_~"'-T='.o"",C'Cft'::..l......Io....&;;lo~ _ ii SIMON FRASER UNIVERSITY LIBRARY Declaration of Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission. Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. Simon Fraser University Library Burnaby, BC, Canada Revised: Fall 2007 Sl1\1()N r=nASER UNIVEHSI'rV TH1NK.ING Of THE WORLO STATEMENT OF ETHICS APPROVAL The author, whose name appears on the title page of this work, has obtained, for the research described in this work, either: (a) Human research ethics approval from the Simon Fraser University Office of Research Ethics, or (b) Advance approval of the animal care protocol from the University Animal Care Committee of Simon Fraser University; or has conducted the research (c) as a co-investigator, in a research project approved in advance, or (d) as a member of a course approved in advance for minimal risk human research, by the Office of Research Ethics. A copy of the approval letter has been filed at the Theses Office of the University Library at the time of submission of this thesis or project. The original application for approval and letter of approval are filed with the relevant offices. Inquiries may be directed to those authorities. Bennett Library Simon Fraser University Burnaby, BC, Canada Last revision: Summer 2007 ABSTRACT It has long been understood that stories can be used to teach elementary and middle school students mathematical ideas. The objective ofthis research was to examine how stories can be integrated into mathematics instruction at the secondary level. As a cognitive tool, story can play an especially significant role in engaging students' imaginations. Nine separate studies were conducted to examine what effect different types ofstories have on student learning and to provide mathematics instructors with an array ofexamples ofhow stories can be used at the high school level. Keywords: mathematics; imagination; stories; story; secondary; narrative III DEDICATION For my father and mother, Perumal and Gowry Balakrishnan. Everything I am is a result ofthe sacrifices you made and the unfailing love you surrounded me with. I am blessed beyond measure to have you for my parents. You made me feel like I can accomplish anything. For my children, Sage, MacKenzie, and Elle. Thank you for inspiring me with your stories, your brilliance, and your wonderful senses ofhumour. Thank you for your love, patience, and understanding. You are the loves ofmy life and all ofthis was for you. For my brothers and sister and their spouses, Roger, Desi, Anita, Fiona, and Kelly. Thank you for your support and encouragement. iv ACKNOWLEDGEMENTS I would like to thank Dr. Peter Liljedahl for his patience and guidance through this entire process. Not only was the research that he and Dr. Zazkis conducted a cornerstone for this thesis, but he always knew just what to say to get me back on track. could not have asked for a better advisor and mentor. I would like to thank Dr. Rina Zazkis for helping me see the learning of mathematics in creative new ways and for always taking the time out ofher busy schedule to talk to me about my research. I would like to thank Henry Fair, Henry Bugler, Jenny-Sue Calkins, and Elva McManus for believing in me and encouraging me to go back to school and pursue my academic dreams. I would like to thank Brent Start, Doug Cariou, Carson and Nicole Power, Brian Patel, Angie Levesseur, Janet Laluc, Karen Blom, Aaron McKimmon, Sacha and Janet Page, and Mike and Tisha Wade for their support and for being there for me through difficult times. v TABLE OF CONTENTS Approval ii Abstract iii Dedication iv Acknowledgements v Table of Contents vi List ofFigures xi List ofTables xii 1 Introduction 1 2 Story and the Imagination 8 2.1 Imagination and Mathematics 8 2.2 Imagination and Emotions 9 2.3 Story as a Cognitive Tool 10 2.4 Story and Culture 10 2.5 Story and Emotion 11 2.6 Story and Meaning 12 2.7 Story and Individuals 13 2.8 Story and Children 14 3 The Role ofStory in the Learning ofMathematics 15 3.1 Renewed Interest in Stories 15 3.2 Stories to Ask a Question 17 3.2.1 Instructional Implications 19 3.3 Stories to Accompany a Topic .20 3.3.1 Archimedes 20 3.4 Stories to Introduce an Idea 22 3.4.1 Descartes' Fly 23 3.4.2 Karl Freidrich Gauss 25 3.5 Stories to Intertwine with a Mathematical Topic 27 3.5.1 Princess Dido 27 3.5.2 Kathy's Wardrobe 31 3.5.3 Pure Mathematical Narrative 33 3.5.4 Numberville 35 3.6 Stories to Explain a Concept 36 3.6.1 The Twelve Diamonds 38 3.7 Stories to Introduce an Activity 39 VI 4 Shaping Stories to Maximize Imaginative Engagement .44 4.1 Binary Opposites 45 4.1.1 Archimedes Revisited 48 4.1.2 Princess Dido Revisited 50 4.1.3 Hippasos and the Pythagoreans 53 4.2 Metaphor 56 4.2.1 The Shield Metaphor 58 4.2.2 Metaphor in Fiction 62 4.2.3 Flatland 65 4.3 Knowledge and Human Meaning 68 4.3.1 Historical Narrative or Historical Fiction? 69 4.4 Real-life or Fantasy Contexts 75 4.4.1 The Story ofTan 79 4.4.2 Gulliver's Travels 81 4.5 Rhyme, Rhythm, and Pattern 84 4.5.1 Anno's Mysterious Multiplying Jar, Antaeus, and One Grain ofRice 86 4.5.2 Mathematically-Structured Story 88 4.6 Jokes and Humour 90 4.7 Orally Told Story or the Read Story 94 5 Research Questions 98 5.1 The Imagination 98 5.2 Stories and the Imagination 98 5.3 Stories and Mathematics 99 5.4 Research Question One 100 5.5 Research Question Two 101 6 Methodology: Participants, Setting, Data, and Theoretical Frameworks l03 6.1 Participants and Setting 103 6.1.1 Location ofthe Studies 104 6.1.2 Mathematics 8 Honours 104 6.1.3 Mathematics 9 Honours 105 6.1.4 Mathematics 9 105 6.1.5 Principles ofMathematics 10 106 6.2 Data 107 6.2.1 The Legend ofChikara Ni Bai 108 6.2.2 The Pythagorean Problem 108 6.2.3 The Four 4s 108 6.2.4 Skull Island 108 6.2.5 The Skippers 108 6.2.6 Kelloggs Needs Your Help 108 6.2.7 The Wicked Sons 109 6.2.8 Mathematically-Structured Story 109 6.2.9 The Story of Princess ...J3 109 6.3 Theoretical Framework 109 6.3.1 Egan's Theoretical Framework 11 0 6.3.2 Zazkis and Liljedahl's Theoretical Framework .111 vii 7 Study I: The Legend ofChikara Ni Bai 117 7.1 Treatment 117 7.1.1 Target and Problematic Issue 117 7.1.2 Cognitive Tools 117 7.1.3 Presentation ofProblem and Conclusion 120 7.1.4 Participants 121 7.1.5 The Story 121 7.2 Analysis 123 7.2.1 Attention to Patterns 123 7.2.2 Change ofBase 126 7.2.3 Realistic and Fantasy Contexts 129 8 Study II: The Pythagorean Problem 137 8.1 Treatment 137 8.1.1 Target and Problematic Issue 137 8.1.2 Cognitive Tools 138 8.1.3 Presentation ofProblem, Extending the Problem Situation, and Conclusion 139 8.1.4 Participants 141 8.1.5 The Story 141 8.2 Analysis 141 8.2.1 Binary Opposites, Knowledge and Human Meaning, and Jokes and Humour 141 8.2.2 Level ofEngagement.
Recommended publications
  • On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, pp.15-27 ON THE STANDARD LENGTHS OF ANGLE BISECTORS AND THE ANGLE BISECTOR THEOREM G.W INDIKA SHAMEERA AMARASINGHE ABSTRACT. In this paper the author unveils several alternative proofs for the standard lengths of Angle Bisectors and Angle Bisector Theorem in any triangle, along with some new useful derivatives of them. 2010 Mathematical Subject Classification: 97G40 Keywords and phrases: Angle Bisector theorem, Parallel lines, Pythagoras Theorem, Similar triangles. 1. INTRODUCTION In this paper the author introduces alternative proofs for the standard length of An- gle Bisectors and the Angle Bisector Theorem in classical Euclidean Plane Geometry, on a concise elementary format while promoting the significance of them by acquainting some prominent generalized side length ratios within any two distinct triangles existed with some certain correlations of their corresponding angles, as new lemmas. Within this paper 8 new alternative proofs are exposed by the author on the angle bisection, 3 new proofs each for the lengths of the Angle Bisectors by various perspectives with also 5 new proofs for the Angle Bisector Theorem. 1.1. The Standard Length of the Angle Bisector Date: 1 February 2012 . 15 G.W Indika Shameera Amarasinghe The length of the angle bisector of a standard triangle such as AD in figure 1.1 is AD2 = AB · AC − BD · DC, or AD2 = bc 1 − (a2/(b + c)2) according to the standard notation of a triangle as it was initially proved by an extension of the angle bisector up to the circumcircle of the triangle.
    [Show full text]
  • Advanced Euclidean Geometry
    Advanced Euclidean Geometry Paul Yiu Summer 2016 Department of Mathematics Florida Atlantic University July 18, 2016 Summer 2016 Contents 1 Some Basic Theorems 101 1.1 The Pythagorean Theorem . ............................ 101 1.2 Constructions of geometric mean . ........................ 104 1.3 The golden ratio . .......................... 106 1.3.1 The regular pentagon . ............................ 106 1.4 Basic construction principles ............................ 108 1.4.1 Perpendicular bisector locus . ....................... 108 1.4.2 Angle bisector locus . ............................ 109 1.4.3 Tangency of circles . ......................... 110 1.4.4 Construction of tangents of a circle . ............... 110 1.5 The intersecting chords theorem ........................... 112 1.6 Ptolemy’s theorem . ................................. 114 2 The laws of sines and cosines 115 2.1 The law of sines . ................................ 115 2.2 The orthocenter ................................... 116 2.3 The law of cosines .................................. 117 2.4 The centroid ..................................... 120 2.5 The angle bisector theorem . ............................ 121 2.5.1 The lengths of the bisectors . ........................ 121 2.6 The circle of Apollonius . ............................ 123 3 The tritangent circles 125 3.1 The incircle ..................................... 125 3.2 Euler’s formula . ................................ 128 3.3 Steiner’s porism ................................... 129 3.4 The excircles ....................................
    [Show full text]
  • 4 3 E B a C F 2
    See-Saw Geometry and the Method of Mass-Points1 Bobby Hanson February 27, 2008 Give me a place to stand on, and I can move the Earth. — Archimedes. 1. Motivating Problems Today we are going to explore a kind of geometry similar to regular Euclidean Geometry, involving points and lines and triangles, etc. The main difference that we will see is that we are going to give mass to the points in our geometry. We will call such a geometry, See-Saw Geometry (we’ll understand why, shortly). Before going into the details of See-Saw Geometry, let’s look at some problems that might be solved using this different geometry. Note that these problems are perfectly solvable using regular Euclidean Geometry, but we will find See-Saw Geometry to be very fast and effective. Problem 1. Below is the triangle △ABC. Side BC is divided by D in a ratio of 5 : 2, and AB is divided by E in a ration of 3 : 4. Find the ratios in which F divides the line segments AD and CE; i.e., find AF : F D and CF : F E. (Note: in Figure 1, below, only the ratios are shown; the actual lengths are unknown). B 3 E 5 4 F D 2 A C Figure 1 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/archivedocs/2007 2008/lectures/0708lecturespdf/MassPointsBMC07.pdf . 1 2 Problem 2. In Figure 2, below, D and E divide sides BC and AB, respectively, as before.
    [Show full text]
  • Icons of Mathematics an EXPLORATION of TWENTY KEY IMAGES Claudi Alsina and Roger B
    AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 45 Icons of Mathematics AN EXPLORATION OF TWENTY KEY IMAGES Claudi Alsina and Roger B. Nelsen i i “MABK018-FM” — 2011/5/16 — 19:53 — page i — #1 i i 10.1090/dol/045 Icons of Mathematics An Exploration of Twenty Key Images i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page ii — #2 i i c 2011 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2011923441 Print ISBN 978-0-88385-352-8 Electronic ISBN 978-0-88385-986-5 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY-FIVE Icons of Mathematics An Exploration of Twenty Key Images Claudi Alsina Universitat Politecnica` de Catalunya Roger B. Nelsen Lewis & Clark College Published and Distributed by The Mathematical Association of America i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Frank Farris, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Thomas M. Halverson Patricia B. Humphrey Michael J. McAsey Michael J. Mossinghoff Jonathan Rogness Thomas Q. Sibley i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical As- sociation of America was established through a generous gift to the Association from Mary P.
    [Show full text]
  • Foundations of Euclidean Constructive Geometry
    FOUNDATIONS OF EUCLIDEAN CONSTRUCTIVE GEOMETRY MICHAEL BEESON Abstract. Euclidean geometry, as presented by Euclid, consists of straightedge-and- compass constructions and rigorous reasoning about the results of those constructions. A consideration of the relation of the Euclidean “constructions” to “constructive mathe- matics” leads to the development of a first-order theory ECG of “Euclidean Constructive Geometry”, which can serve as an axiomatization of Euclid rather close in spirit to the Elements of Euclid. Using Gentzen’s cut-elimination theorem, we show that when ECG proves an existential theorem, then the things proved to exist can be constructed by Eu- clidean ruler-and-compass constructions. In the second part of the paper we take up the formal relationships between three versions of Euclid’s parallel postulate: Euclid’s own formulation in his Postulate 5, Playfair’s 1795 version, which is the one usually used in modern axiomatizations, and the version used in ECG. We completely settle the questions about which versions imply which others using only constructive logic: ECG’s version im- plies Euclid 5, which implies Playfair, and none of the reverse implications are provable. The proofs use Kripke models based on carefully constructed rings of real-valued functions. “Points” in these models are real-valued functions. We also characterize these theories in terms of different constructive versions of the axioms for Euclidean fields.1 Contents 1. Introduction 5 1.1. Euclid 5 1.2. The collapsible vs. the rigid compass 7 1.3. Postulates vs. axioms in Euclid 9 1.4. The parallel postulate 9 1.5. Polygons in Euclid 10 2.
    [Show full text]
  • The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every
    1 The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every line is a set of points, and the collection of all points forms a set P called the plane. Axiom 2 (The Existence Postulate). There exist at least two distinct points. Axiom 3 (The Incidence Postulate). For every pair of distinct points P and Q, there exists exactly one line ` such that both P and Q lie on `. Axiom 4 (The Distance Postulate). For every pair of points P and Q, the distance from P to Q, denoted by P Q, is a nonnegative real number determined uniquely by P and Q. Axiom 5 (The Ruler Postulate). For every line `, there is a bijective function f : ` R with the property that for any two points P, Q `, we have → ∈ P Q = f(Q) f(P ) . | − | Any function with these properties is called a coordinate function for `. Axiom 6 (The Plane Separation Postulate). If ` is a line, the sides of ` are two disjoint, nonempty sets of points whose union is the set of all points not on `. If P and Q are distinct points not on `, then both of the following equivalent conditions are satisfied: (i) P and Q are on the same side of ` if and only if P Q ` = ∅. ∩ (ii) P and Q are on opposite sides of ` if and only if P Q ` = ∅. ∩ 6 Axiom 7 (The Angle Measure Postulate). For every angle ∠ABC, the measure of ∠ABC, denoted by µ∠ABC, isa real number strictly between 0 and 180, determined uniquely by ∠ABC. Axiom 8 (The Protractor Postulate).
    [Show full text]
  • The Steiner-Lehmus Theorem an Honors Thesis
    The Steiner-Lehmus Theorem An Honors ThesIs (ID 499) by BrIan J. Cline Dr. Hubert J. LudwIg Ball State UniverSity Muncie, Indiana July 1989 August 19, 1989 r! A The Steiner-Lehmus Theorem ; '(!;.~ ,", by . \:-- ; Brian J. Cline ProposItion: Any triangle having two equal internal angle bisectors (each measured from a vertex to the opposite sIde) is isosceles. (Steiner-Lehmus Theorem) ·That's easy for· you to say!- These beIng the possible words of a suspicIous mathematicIan after listenIng to some assumIng person state the Steiner-Lehmus Theorem. To be sure, the Steiner-Lehmus Theorem Is ·sImply stated, but notoriously difficult to prove."[ll Its converse, the bIsectors of the base angles of an Isosceles trIangle are equal, Is dated back to the tIme of EuclId and is easy to prove. The Steiner-Lehmus Theorem appears as if a proof would be simple, but it is defInItely not.[2l The proposition was sent by C. L. Lehmus to the Swiss-German geometry genIus Jacob SteIner in 1840 with a request for a pure geometrIcal proof. The proof that Steiner gave was fairly complex. Consequently, many inspIred people began searchIng for easier methods. Papers on the Steiner-Lehmus Theorem were prInted in various Journals in 1842, 1844, 1848, almost every year from 1854 untIl 1864, and as a frequent occurence during the next hundred years.[Sl In terms of fame, Lehmus dId not receive nearly as much as SteIner. In fact, the only tIme the name Lehmus Is mentIoned In the lIterature Is when the title of the theorem is gIven. HIs name would have been completely forgotten if he had not sent the theorem to Steiner.
    [Show full text]
  • The Calculus: a Genetic Approach / Otto Toeplitz ; with a New Foreword by David M
    THE CALCULUS THE CALCULUS A Genetic Approach OTTO TOEPLITZ New Foreword by David Bressoud Published in Association with the Mathematical Association of America The University of Chicago Press Chicago · London The present book is a translation, edited after the author's death by Gottfried Kothe and translated into English by LuiseLange. The German edition, DieEntwicklungder Infinitesimalrechnung,was published by Springer-Verlag. The University of Chicago Press,Chicago 60637 The University of Chicago Press,ltd., London © 1963 by The University of Chicago Foreword © 2007 by The University of Chicago All rights reserved. Published 2007 Printed in the United States of America 16 15 14 13 12 11 10 09 08 07 2 3 4 5 ISBN-13: 978-0-226-80668-6 (paper) ISBN-10: 0-226-80668-5 (paper) Library of Congress Cataloging-in-Publication Data Toeplitz, Otto, 1881-1940. [Entwicklung der Infinitesimalrechnung. English] The calculus: a genetic approach / Otto Toeplitz ; with a new foreword by David M. Bressoud. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-80668-6 (pbk. : alk. paper) ISBN-10: 0-226-80668-5 (pbk. : alk. paper) 1. Calculus. 2. Processes, Infinite. I. Title. QA303.T64152007 515-dc22 2006034201 § The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1992. FOREWORDTO THECALCULUS: A GENETICAPPROACHBYOTTO TOEPLITZ September 30, 2006 Otto Toeplitz is best known for his contributions to mathematics, but he was also an avid student of its history. He understood how useful this history could be in in­ forming and shaping the pedagogy of mathematics.
    [Show full text]
  • View This Volume's Front and Back Matter
    Continuou s Symmetr y Fro m Eucli d to Klei n This page intentionally left blank http://dx.doi.org/10.1090/mbk/047 Continuou s Symmetr y Fro m Eucli d to Klei n Willia m Barke r Roge r How e >AMS AMERICAN MATHEMATICA L SOCIET Y Freehand® i s a registere d trademar k o f Adob e System s Incorporate d in th e Unite d State s and/o r othe r countries . Mathematica® i s a registere d trademar k o f Wolfra m Research , Inc . 2000 Mathematics Subject Classification. Primar y 51-01 , 20-01 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/mbk-47 Library o f Congres s Cataloging-in-Publicatio n Dat a Barker, William . Continuous symmetr y : fro m Eucli d t o Klei n / Willia m Barker , Roge r Howe . p. cm . Includes bibliographica l reference s an d index . ISBN-13: 978-0-8218-3900- 3 (alk . paper ) ISBN-10: 0-8218-3900- 4 (alk . paper ) 1. Geometry, Plane . 2 . Group theory . 3 . Symmetry groups . I . Howe , Roger , 1945 - QA455.H84 200 7 516.22—dc22 200706079 5 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research .
    [Show full text]
  • Exploring Euclidean Geometry
    Dennis Chen’s Exploring Euclidean Geometry A S I B C D E T M X IA Dennis Chen Last updated August 8, 2020 Exploring Euclidean Geometry V2 Dennis Chen August 8, 2020 1 Introduction This is a preview of Exploring Euclidean Geometry V2. It contains the first five chapters, which constitute the entirety of the first part. This should be a good introduction for those training for computational geometry questions. This book may be somewhat rough on beginners, so I do recommend using some slower-paced books as a supplement, but I believe the explanations should be concise and clear enough to understand. In particular, a lot of other texts have unnecessarily long proofs for basic theorems, while this book will try to prove it as clearly and succintly as possible. There aren’t a ton of worked examples in this section, but the check-ins should suffice since they’re just direct applications of the material. Contents A The Basics3 1 Triangle Centers 4 1.1 Incenter................................................4 1.2 Centroid................................................5 1.3 Circumcenter.............................................6 1.4 Orthocenter..............................................7 1.5 Summary...............................................7 1.5.1 Theory............................................7 1.5.2 Tips and Strategies......................................8 1.6 Exercises...............................................9 1.6.1 Check-ins...........................................9 1.6.2 Problems...........................................9
    [Show full text]
  • |||GET||| Geometry Theorems and Constructions 1St Edition
    GEOMETRY THEOREMS AND CONSTRUCTIONS 1ST EDITION DOWNLOAD FREE Allan Berele | 9780130871213 | | | | | Geometry: Theorems and Constructions For readers pursuing a career in mathematics. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed Geometry Theorems and Constructions 1st edition theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. Then the 'construction' or 'machinery' follows. For example, propositions I. The Triangulation Lemma. Pythagoras c. More than editions of the Elements are known. Euclidean geometryelementary number theoryincommensurable lines. The Mathematical Intelligencer. A History of Mathematics Second ed. The success of the Elements is due primarily to its logical presentation of most of the mathematical knowledge available to Euclid. Arcs and Angles. Applies and reinforces the ideas in the geometric theory. Scholars believe that the Elements is largely a compilation of propositions based on books by earlier Greek mathematicians. Enscribed Circles. Return for free! Description College Geometry offers readers a deep understanding of the basic results in plane geometry and how they are used. The books cover plane and solid Euclidean geometryelementary number theoryand incommensurable lines. Cyrene Library of Alexandria Platonic Academy. You can find lots of answers to common customer questions in our FAQs View a detailed breakdown of our shipping prices Learn about our return policy Still need help? View a detailed breakdown of our shipping prices. Then, the 'proof' itself follows. Distance between Parallel Lines. By careful analysis of the translations and originals, hypotheses have been made about the contents of the original text copies of which are no longer available.
    [Show full text]
  • New Editor-In-Chief for CRUX with MAYHEM
    1 New Editor-in-Chief for CRUX with MAYHEM We happily herald Shawn Godin of Cairine Wilson Secondary School, Orleans, ON, Canada as the next Editor-in-Chief of Crux Mathematicorum with Mathematical Mayhem effective 21 March 2011. With this issue Shawn takes the reins, and though some of you know Shawn as a former Mayhem Editor let me provide some further background. Shawn grew up outside the small town of Massey in Northern On- tario. He obtained his B. Math from the University of Waterloo in 1987. After a few years trying to decide what to do with his life Shawn returned to school obtaining his B.Ed. in 1991. Shawn taught at St. Joseph Scollard Hall S.S. in North Bay from 1991 to 1998. During this time he married his wife Julie, and his two sons Samuel and Simon were born. In the summer of 1998 he moved with his family to Orleans where he has taught at Cairine Wilson S.S. ever since (with a three year term at the board office as a consultant). He also managed to go back to school part time and earn an M.Sc. in mathematics from Carleton University in 2002. Shawn has been involved in many mathematical activities. In 1998 he co-chaired the provincial mathematics education conference. He has been involved with textbook companies developing material for teacher resources and the web as well as writing a few chapters for a grade 11 textbook. He has developed materials for teachers and students for his school board, as well as the provincial ministry of education.
    [Show full text]