Evolution of the Universe Instructor: Brent Tully E-Mail:[email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Universe Instructor: Brent Tully E-Mail:Tully@Ifa.Hawaii.Edu Astronomy 280 Evolution Of The Universe Instructor: Brent Tully E-mail:[email protected] https://oort.ifa.hawaii.edu/users/tully Basic Concepts • For the most part, astronomers learn about the universe by detecting and analyzing radiation. [To a limited degree, they also detect particles like cosmic rays and neutrinos and meteorites, and can now directly accumulate samples in the solar system.] • Electromagnetic radiation. Transfer of energy at the speed of light, 300,000 km/s. Equivalence between energy in waves and in discrete “bullets” called photons. The amount of energy carried by a photon determines its wavelength or frequency. Light Waves • Frequency = number of waves passing by per second • Long wavelengths low frequency • Short wavelengths high frequency • High frequency (short wavelength) high energy Wavelength • Low frequency (long wavelength) low energy • The electromagnetic spectrum: • Low energy ………………….…………………….. high energy Radio – submillimeter - infrared – optical- ultraviolet –X ray - γ ray • Mauna kea outstanding for submillimeter, infrared, optical [Minimal water vapor and non- turbulent atmosphere] Wavelength and Frequency wavelength × frequency = speed of light = constant galaxy images in different passbands Messier 33 Hα superimposed on visible image ultraviolet red Hydrogen α spectral line Neutral Hydrogen images of galaxies Three basic types of spectra: Continuous Spectrum Emission Line Spectrum Absorption Line Spectrum Spectra of astrophysical objects are usually combinations of these three basic types. Continuous Spectrum • The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption. Emission Line Spectrum • A thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition, producing a spectrum with bright emission lines. Absorption Line Spectrum • A cloud of gas between us and a light bulb can absorb light of specific wavelengths, leaving dark absorption lines in the spectrum. Discrete Radiation Processes Line Emission or Absorption: These energy transitions are between discrete energy levels “quantized” energy transitions at specific wavelength (or frequency) elements or molecules will have characteristic “spectral features” depending on the energy states available for electrons in their atoms A Continuum Radiation Process “Recombination” and “ionization” where an electron becomes attached to or escapes from a nucleus by filling or emptying an orbit location. Radiation is released or absorbed in this process • Ionization: energy absorbed to kick electron out of atom • Recombination: energy emitted, allowing electron to settle into lower energy state Ionization and recombination radiation are drawn from a “continuum” of possible wavelengths (frequencies) at higher energies (shorter wavelengths) than a threshold Other Examples of “Continuum” Energy Exchange / Transitions: • Free-free transitions: electron scattering outside atoms • Synchrotron radiation: electrons accelerated in a magnetic field • Thermal or black body spectrum: Increase temperature spectrum shift to higher energies (higher frequencies / shorter λ) 2 . 1 h t g n e l e v a w a t a y t i s n e t n i k a e p e r u t a r e p m e t e h t f o c i t s i r e t c a r a h c 1 8 . 0 y t i s 6 . 0 n e t n I 4 . 0 2 . 0 0 0 0 y 2 g r e n E 0 8 w 1 o L 0 6 1 0 4 1 0 2 1 0 0 1 0 8 0 6 0 4 0 2 y g r e n 0 E h g i H Doppler Shift of Radiation • Consider as an example a spectral line associated with a transition between two specific energy states in an atom: • Suppose the source of the radiation is approaching waves are compressed; arrive more frequently - blueshift • Or if the source is receding, waves stretched out - redshift I intend this lecture to be an overview of the big bang model of the universe from the standpoint of the observational motivation. Nowadays, the big bang model is overwhelmingly preferred over other alternatives; Why is that? I want to explain why I am going to focus so intently on one idea and not give serious attention to any alternative. Five Pieces of Evidence for the Big Bang 1. Expanding universe. 2. Universe has an “age.” 3. Universe is evolving. 4. Microwave background radiation. 5. Abundance of elements. Five pieces of evidence for a Big Bang 1. Expanding Universe • Galaxies are observed to be flying apart from one another. More distant galaxies are moving away from us faster. • If one does the thought experiment of reversing time and considers the galaxies to be moving together then they all merge together in ~12 billion years. • This observation is consistent with the idea that the galaxies emerged from a common place roughly that long ago. (Car trav els at 60 mph and is now 120 miles f rom home. How long since it started?) Five pieces of evidence for a big Bang 2. Universe has an “age” • We have a good understanding of how stars work and can calculate how old they are at various stages of their development. Galaxies are aggregates of stars. Throughout the universe we find star populations of all possible ages up to a certain maximum. The oldest stars are estimated to have ages of ~14 billion years. • We do not find anything older and infer that the universe is roughly this old. There is a small inconsistency between the ages mentioned in (1) and (2) but a v ariety of explanations are possible within the Big Bang f ramework – such details will be discussed later. Five pieces of evidence for a Big Bang 3. Universe is evolving. • Light travels at 300,000 km/s so that light we receive from more distant objects was emitted long ago. Extremely distant galaxies are red because they have large • As we look outward, we are looking back in time. velocities away from us due to the expansion of the universe, hence have large doppler redshifts. • What we find is that things that are farther away are different from things nearby. - more galaxies with active nuclei. - proportion of blue galaxies (young, hot stars) is greater at large distances; nearby galaxies tend to be intrinsically redder (dominantly composed of old, cool stars). - more interacting and irregular galaxies at very large distances. These observations are compatible with the idea that we are looking out, and back, to the time when galaxies were just forming and the stars in them were young. Five pieces of evidence for a Big Bang 4. Microwave Background Radiation. • If we run the clock of time backward, then at earlier times temperatures and densities were higher. At the earliest moments, these densities and temperature were extreme. • The black body radiation from this hot material would have ‘redshifted’ with the flying apart of the universe. It was anticipated that the remnant of this radiation should still be around but now shifted to very low energies. This radiation has been detected and peaks at ~1mm ~ 3oK. • Not only does this measurement provide a strong consistency check with the idea that the universe was once very hot, but it also provides detailed quantitative information about the energy density of the universe. This information can be used to build very specific models. • This radiation is not entirely smooth and the irregularities in it provide information relevant to the formation of structure in the universe. Five pieces of evidence for a Big Bang 5. Abundance of Elements. • In the Big Bang model, the primordial soup consisted of only the most basic nuclear particles and all the chemical abundances were build up with time. • A distinction is made between the “light” elements (hydrogen, helium, lithium, beryllium, boron) and the rest of the elements in the periodic table. There is now a reasonable understanding of how the heavy elements formed in stars, a little at a time, over the long history of the cosmos. • By contrast, the production of the light elements, for the most part, would have occurred during the Big Bang. • Consistent with this idea, the abundances of the light elements are approximately the same everywhere we look while the abundances of the heavier elements depend very much on environment. • A specific triumph of the Big Bang concept is the prediction, in accordance with observations, that ~25% of the mass in normal particles would be Helium and almost all the rest would be Hydrogen. Detailed measurements of rare species like Deuterium and Lithium provide strong constraints on the details of the Big Bang model..
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Or Continuous Spectrum and Not to the Line Spectra. in the X-Ray Region, In
    662 PHYSICS: W. D UA NE PROC. N. A. S. intensity is greatest close to -80 and that it falls off regularly as the angle departs therefrom. We conclude, therefore, that the momentum of the electron in its orbit uithin the atom does not affect the direction of ejection in the way denanded by the theory of Auger and Perrin. While this does not constitute definite evidence against the physical reality of electronic orbits, it is a serious difficulty for the conception. A detailed discussion of the general question here raised in the light of new experimental results will be published elsewhere. 1 Auger, P., J. Physique Rad., 8, 1927 (85-92). 2 Loughridge, D. H., in press. 3 Bothe, W., Zs. Physik, 26, 1924 (59-73). 4 Auger, P., and Perrin, F., J. Physique Rad., 8, 1927 (93-111). 6 Bothe, W., Zs. Physik, 26,1924 (74-84). 6 Watson, E. C., in press. THE CHARACTER OF THE GENERAL, OR CONTINUOUS SPEC- TRUM RADIA TION By WILLIAM DuANX, DJPARTMSNT OF PHysIcs, HARVARD UNIVERSITY Communicated August 6, 1927 The impacts of electrons against atoms produce two different kinds of radiation-the general, or continuous spectrum and the line spectra. By far the greatest amount of energy radiated belongs to the general, or continuous spectrum and not to the line spectra. In the X-ray region, in particular, the continuous, or general radiation spectrum carries most of the radiated energy. In spite of this, and because the line spectra have an important bearing on atomic structure, the general radiation has received much less attention than the line spectra in the recent de- velopment of fundamental ideas in physical science.
    [Show full text]
  • Discrete-Continuous and Classical-Quantum
    Under consideration for publication in Math. Struct. in Comp. Science Discrete-continuous and classical-quantum T. Paul C.N.R.S., D.M.A., Ecole Normale Sup´erieure Received 21 November 2006 Abstract A discussion concerning the opposition between discretness and continuum in quantum mechanics is presented. In particular this duality is shown to be present not only in the early days of the theory, but remains actual, featuring different aspects of discretization. In particular discreteness of quantum mechanics is a key-stone for quantum information and quantum computation. A conclusion involving a concept of completeness linking dis- creteness and continuum is proposed. 1. Discrete-continuous in the old quantum theory Discretness is obviously a fundamental aspect of Quantum Mechanics. When you send white light, that is a continuous spectrum of colors, on a mono-atomic gas, you get back precise line spectra and only Quantum Mechanics can explain this phenomenon. In fact the birth of quantum physics involves more discretization than discretness : in the famous Max Planck’s paper of 1900, and even more explicitly in the 1905 paper by Einstein about the photo-electric effect, what is really done is what a computer does: an integral is replaced by a discrete sum. And the discretization length is given by the Planck’s constant. This idea will be later on applied by Niels Bohr during the years 1910’s to the atomic model. Already one has to notice that during that time another form of discretization had appeared : the atomic model. It is astonishing to notice how long it took to accept the atomic hypothesis (Perrin 1905).
    [Show full text]
  • Spectrum (Functional Analysis) - Wikipedia, the Free Encyclopedia
    Spectrum (functional analysis) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spectrum_(functional_analysis) Spectrum (functional analysis) From Wikipedia, the free encyclopedia In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if λI − T is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator R on the Hilbert space ℓ2, This has no eigenvalues, since if Rx=λx then by expanding this expression we see that x1=0, x2=0, etc. On the other hand 0 is in the spectrum because the operator R − 0 (i.e. R itself) is not invertible: it is not surjective since any vector with non-zero first component is not in its range. In fact every bounded linear operator on a complex Banach space must have a non-empty spectrum. The notion of spectrum extends to densely-defined unbounded operators. In this case a complex number λ is said to be in the spectrum of such an operator T:D→X (where D is dense in X) if there is no bounded inverse (λI − T)−1:X→D.
    [Show full text]
  • Continuous Spectrum—Kirchoff's First
    Continuous Spectrum—Kirchoff’s First Law • A hot opaque substance (solid, liquid or gas) gives off a continuous spectrum, that is, a spectrum containing energy at all wavelengths. • Examples where a continuous spectrum will be found: • An incandescent bulb. • A pool of molten iron • Lava flowing from a volcano. • A hot, ionized, opaque gas (such as below the Sun’s atmosphere). • A continuous spectrum approximates a black body spectrum, the spectrum observed from a perfectly black substance heated to a high temperature. No real spectrum is a perfect black body spectrum, but many are good approximations to it. AST 303: Chapter 13 1 Black-body (Continuous) Spectrum • The energy distribution of a black body spectrum looks like this: 1000 Visible 100 10 UV Infrared Intensity (arbitrary units) 1 1000 3000 10000 30000 100000 Wavelength (Ångstroms) AST 303: Chapter 13 2 Wien’s Law—Temperature Dependence (1) • We are familiar with the fact that the color of a heated object changes as its temperature changes. As we heat a substance, it first glows a dull red; then a bright red, then orange, yellow, white, and finally bluish-white. This happens because the distribution of energy with wavelength shifts to predominantly shorter and shorter wavelengths as the temperature rises. • Mathematically, we can calculate the wavelength of maximum emission: 3 !107 Wavelength of Maximum = Å T where T is the temperature in degrees Kelvin. AST 303: Chapter 13 3 How Color Varies with Temperature AST 303: Chapter 13 4 Emission Spectra—Kirchoff’s Second Law • When a transparent gas is heated to a high temperature, one sees an emission spectrum, also known as a bright-line spectrum.
    [Show full text]
  • Continuous Spectrum X-Rays from Thin Targets
    RP 60 CONTINUOUS SPECTRUM X RAYS FROM THIN TARGETS * By Warren W. Nicholas 2 Technique is described for the use of thin metal foils as anticathodes in X-ray- tubes. The continuous radiation from these foils is analyzed by a crystal, the intensities being measured by a photographic comparison method. It is indicated that the high-frequency limit of the continuous spectrum from an infinitely thin target consists of a finite discontinuity. (The corresponding thick target spectrum has only a discontinuity of slope.) The energy distributions on a frequency scale are approximately horizontal, for gold and for aluminum, and for ^=40°, 90°, and 140°, where \I/ is the angle between measured X rays and cathode stream; this agrees with Kramer's, but not with Wentzel's, theory. The intensities for these values of \p are roughly 3:2:1, respectively; theories have not yet been constructed for the variation with \p of resolved energy, but it is pointed out that the observations do not support a supposed quantum process in which a single cathode ray, losing energy hv by interaction with a nucleus, radiates a single frequency v in the continuous spectrum. The observations do not support the "absorption" process assumed by Lenard, in which cathode rays, in penetrating a metal, suffered large losses of speed not accompanied by radiation. The manner in which thick target spectra are synthesized from thin is discussed, and empirical laws are formulated describing the dependence on of thick target continuous spectrum energy. A structure for the moving \f/ electron is proposed which explains classically X ray continuous spectrum phenomena, and seems to have application in other fields as well.
    [Show full text]
  • X-Ray Emission Spectrum
    X-ray Emission Spectrum Dr. Ahmed Alsharef Farah Dr. Ahmed Alsharef Farah 1 • X-ray photons produced by an X-ray tube are heterogeneous in energy. • The energy spectrum shows a continuous distribution of energies for the bremsstrahlung photons superimposed by characteristic radiation of discrete energies. Dr. Ahmed Alsharef Farah 2 There are two types of X-ray spectrum: 1. Bremsstrahlung or continuous spectrum. 2. Characteristic spectrum. Dr. Ahmed Alsharef Farah 3 • A bremsstrahlung spectrum consists of X- ray photons of all energies up to maximum in a continuous fashion, which is also known as white radiation, because of its similarity to white light. • A characteristic spectrum consists of X-ray photons of few energy, which is also called as line spectrum. • The position of the characteristic radiation depends upon the atomic number of the target. Dr. Ahmed Alsharef Farah 4 Dr. Ahmed Alsharef Farah 5 Characteristic X-ray Spectrum: • The discrete energies of characteristic x- rays are characteristic of the differences between electron binding energies in a particular element. • A characteristic x-ray from tungsten, for example, can have 1 of 15 different energies and no others. Dr. Ahmed Alsharef Farah 6 Characteristic X-rays of Tungsten and Their Effective Energies (keV). Dr. Ahmed Alsharef Farah 7 Characteristic x-ray emission spectrum for tungsten contains 15 different x-ray energies. Dr. Ahmed Alsharef Farah 8 • Such a plot is called the characteristic x-ray emission spectrum. • Five vertical lines representing K x-rays and four vertical lines representing L x-rays are included. • The lower energy lines represent characteristic emissions from the outer electron shells.
    [Show full text]
  • Flexible Learning Approach to Physics (FLAP)
    ATOMIC SPECTRA AND THE HYDROGEN ATOM MODULE P8.2 F PAGE P8.2.1 Module P8.2 Atomic spectra and the hydrogen atom 1 Opening items 1 Ready to study? 2 The production of atomic spectra 3 Study comment To study this module you will need to understand the following terms: 2.1 Characteristic emission spectra 3 absolute temperature, angular momentum, angular frequency, atom, Boltzmann’s constant, 2.2 Continuous emission spectra; the centripetal force, circular motion, Coulomb’s law, diffraction grating, dispersion, electric black-body spectrum 4 potential energy, electromagnetic radiation, electromagnetic spectrum (including ultraviolet 2.3 Absorption spectra 4 and infrared), electronvolt, energy conservation, force, frequency the grating relation 2.4 Summary of Section 2 5 λ2 2 1 1θ (n = d sin n), kinetic energy, molecule momentum, momentum conservation, Newton’s 3 The emission spectrum of laws of motion, orders of diffraction, wavelength. In addition, some familiarity with the use atomic hydrogen 5 of basic algebra, exponentials, graph plotting, logarithms and trigonometric functions will 3.1 The visible spectrum of atomic be assumed. If you are uncertain about any of these terms, review them now by reference to hydrogen; Balmer’s formula 6 the Glossary, which will also indicate where in FLAP they are developed. 3.2 The ultraviolet and infrared series of lines for hydrogen 6 Module summary 3.3 Summary of Section 3 7 1 The spectrum of a sample of electromagnetic radiation shows the way in which 4 Bohr’s model for the hydrogen atom 7 the energy carried by that radiation is distributed with respect to wavelength 4.1 The four postulates 7 (or frequency).
    [Show full text]
  • Electromagnetic Radiation Production of Light
    Electromagnetic Radiation Production of Light Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright notice for fair use practices. When light is passed through a prism or a diffraction grating to produce a spectrum, the type of spectrum you will see depends on what kind of object is producing the light: is it a thick or thin gas, is it hot or cool, is it a gas or a solid? There are two basic types of spectra: continuous spectrum (energy at all wavelengths) and discrete spectrum (energy at only certain wavelengths). Astronomers usually refer to the two types of discrete spectra: emission lines (bright lines) and absorption lines (dark lines in an otherwise continuous spectrum) as different types of spectra. Continuous Spectrum A rainbow is an example of a continuous spectrum. Most continuous spectra are from hot, dense objects like stars, planets, or moons. The continuous spectrum from these kinds of objects is also called a thermal spectrum, because hot, dense objects will emit electromagnetic radiation at all wavelengths or colors. Any solid, liquid and dense (thick) gas at a temperature above absolute zero will produce a thermal spectrum. A thermal spectrum is the simplest type of spectrum because its shape depends on only the temperature. A discrete spectrum is more complex because it depends on temperature and other things like the chemical composition of the object, the gas density, surface gravity, speed, etc. Exotic objects like neutron stars and black holes can produce another type of continuous spectrum called ``synchrotron spectrum'' from charged particles swirling around magnetic fields, but I will discuss them in another chapter later on.
    [Show full text]
  • Characteristic and Continuous X-Rays Jitender Singh| October 18, 2019
    Characteristic and Continuous X-rays Jitender Singh| www.concepts-of-physics.com October 18, 2019 1 Introduction HV • • The x-rays are produced in a Coolidge tube when a high energy −+ electron interacts with a heavy metal target. Anode e− +−• Cathode • The high energy electrons get decelerated by Coulomb’s in- LV teraction with the target atom. These decelerating electrons emit con- tinuous X-rays (or bremsstrahlung). When an electron loses its en- X-ray tire energy in a single Coulomb’s interaction then X-rays of minimum Figure 1: In Coolidge Tube, the intensity wavelength (cut-off wavelength) are emitted. of x-rays is controlled by the filament The cut-off wavelength of the continuous X-ray spectrum is related current/voltage (LV) and the frequency of x-rays is controlled by the accelerat- to the accelerating potential V of the Coolidge tube by ing voltage (HV). hc 12400 Target Nucleus • − lcut off = ≈ (Å/V). e eV V + Typically, accelerating voltage is a few thousand Volts and cut off • − wavelength is of the order of an Angstrom. The cut-off frequency e of continuous x-rays is given by ncut off = c/lcut off. The cutoff wave- length decreases when the accelerating potential of Coolidge tube is X-ray increased. The intensity of X-rays increases with an increase in ac- Figure 2: An electron decelerated by Coulomb’s interaction of target atom celerating potential as shown in the figure. The intensity of X-rays emits X-rays in the continuous spectrum. depends on multiple factors. Relative Intensity The high energy electrons also knock out an inner shell electron of 1.0 K a 50 kV the target atom.
    [Show full text]
  • The Spectrum of Atomic Hydrogen
    The Spectrum of Atomic Hydrogen For almost a century light emitted by the simplest of atoms has been the chief experimental basis for theories of the structure of matter. Exploration of the hydrogen spectrum continues, now aided by lasers by Theodor W. Hansch, Arthur L. Schawlow and George W. Series he spectrum of the hydrogen atom sorbed. glvmg rise to dark lines on a that he could account for the positions has proved to be the Rosetta stone bright background. of all the known lines by applying a sim­ Tof modern physics: once this pat­ Hydrogen is the simplest of atoms. be­ ple empirical formula. The entire set of tern of lines had been deciphered much ing made up of a single electron and a lines has since come to be known as the else could also be understood. Most no­ nucleus that consists of a single proton. Balmer series. Another group of lines. tably. it was largely the effort to explain and so it can be expected to have the the Lyman series. lies in the far ultravio­ the spectrum of light emitted by the hy­ simplest spectrum. The spectrum is not. let. and there are other series at longer drogen atom that inspired the laws of however. an easy one to record. The wavelengths. Within each series the in­ quantum mechanics. Those laws have most prominent line was detected in dividual lines are designated by Greek since been found to apply not only to 1853 by Anders Jonas Angstrom. (The letters. starting with the line of longest the hydrogen atom but also to other common unit for measuring wave­ wavelength.
    [Show full text]
  • The Formalism of Quantum Mechanics Relevant Sections in Text
    The formalism of quantum mechanics The formalism of quantum mechanics Relevant sections in text: Chapter 3 Now for some formalism::: We have now acquired a little familiarity with how quantum mechanics works via some simple examples. Our approach has been rather informal; we have not clearly stated the rules of the game. The situation is analogous to one way of studying Newtonian mechanics. In your first exposure to Newtonian mechanics you may have had the following experience. First, we introduce some basic concepts, such as vectors, force, acceleration, energy, etc. We learn, to some extent, how to use these concepts by studying some simple examples. Along the way, we state (perhaps without full generality) some of the key laws that are being used. Second, we make things a bit more systematic, e.g., by carefully stating Newton's laws. More or less, we have completed the first of the steps. Now we must complete the second step. To formulate the laws (or postulates) of quantum mechanics, we need to spend a little time giving some mathematical method to the madness we have been indulging in so far. In particular, we need to give a linear algebraic type of interpretation to the apparatus of wave functions, operators, expectation values, and so forth. We begin by developing a point of view in which states of the system are elements of a (very large) vector space. I assume that you are already familiar with the fundamentals of linear algebra (vector spaces, bases, linear transformations, eigenvalue problems, etc. ). If you need some remedial work, have a look at the first section of chapter 3 in the text.
    [Show full text]