SUN ZFS Storage 7000 System Administration Guide.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracle® ZFS Storage Appliance Security Guide, Release OS8.6.X
® Oracle ZFS Storage Appliance Security Guide, Release OS8.6.x Part No: E76480-01 September 2016 Oracle ZFS Storage Appliance Security Guide, Release OS8.6.x Part No: E76480-01 Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Virtfs—A Virtualization Aware File System Pass-Through
VirtFS—A virtualization aware File System pass-through Venkateswararao Jujjuri Eric Van Hensbergen Anthony Liguori IBM Linux Technology Center IBM Research Austin IBM Linux Technology Center [email protected] [email protected] [email protected] Badari Pulavarty IBM Linux Technology Center [email protected] Abstract operations into block device operations and then again into host file system operations. This paper describes the design and implementation of In addition to performance improvements over a tradi- a paravirtualized file system interface for Linux in the tional virtual block device, exposing guest file system KVM environment. Today’s solution of sharing host activity to the hypervisor provides greater insight to the files on the guest through generic network file systems hypervisor about the workload the guest is running. This like NFS and CIFS suffer from major performance and allows the hypervisor to make more intelligent decisions feature deficiencies as these protocols are not designed with respect to I/O caching and creates new opportuni- or optimized for virtualization. To address the needs of ties for hypervisor-based services like de-duplification. the virtualization paradigm, in this paper we are intro- ducing a new paravirtualized file system called VirtFS. In Section 2 of this paper, we explore more details about This new file system is currently under development and the motivating factors for paravirtualizing the file sys- is being built using QEMU, KVM, VirtIO technologies tem layer. In Section 3, we introduce the VirtFS design and 9P2000.L protocol. including an overview of the 9P protocol, which VirtFS is based on, along with a set of extensions introduced for greater Linux guest compatibility. -
Nxadmin CLI Reference Guide Unity Iv Contents
HYPER-UNIFIED STORAGE nxadmin Command Line Interface Reference Guide NEXSAN | 325 E. Hillcrest Drive, Suite #150 | Thousand Oaks, CA 91360 USA Printed Thursday, July 26, 2018 | www.nexsan.com Copyright © 2010—2018 Nexsan Technologies, Inc. All rights reserved. Trademarks Nexsan® is a trademark or registered trademark of Nexsan Technologies, Inc. The Nexsan logo is a registered trademark of Nexsan Technologies, Inc. All other trademarks and registered trademarks are the property of their respective owners. Patents This product is protected by one or more of the following patents, and other pending patent applications worldwide: United States patents US8,191,841, US8,120,922; United Kingdom patents GB2466535B, GB2467622B, GB2467404B, GB2296798B, GB2297636B About this document Unauthorized use, duplication, or modification of this document in whole or in part without the written consent of Nexsan Corporation is strictly prohibited. Nexsan Technologies, Inc. reserves the right to make changes to this manual, as well as the equipment and software described in this manual, at any time without notice. This manual may contain links to web sites that were current at the time of publication, but have since been moved or become inactive. It may also contain links to sites owned and operated by third parties. Nexsan is not responsible for the content of any such third-party site. Contents Contents Contents iii Chapter 1: Accessing the nxadmin and nxcmd CLIs 15 Connecting to the Unity Storage System using SSH 15 Prerequisite 15 Connecting to the Unity -
Managing Network File Systems in Oracle® Solaris 11.4
Managing Network File Systems in ® Oracle Solaris 11.4 Part No: E61004 August 2021 Managing Network File Systems in Oracle Solaris 11.4 Part No: E61004 Copyright © 2002, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
Chapter 15: File System Internals
Chapter 15: File System Internals Operating System Concepts – 10th dition Silberschatz, Galvin and Gagne ©2018 Chapter 15: File System Internals File Systems File-System Mounting Partitions and Mounting File Sharing Virtual File Systems Remote File Systems Consistency Semantics NFS Operating System Concepts – 10th dition 1!"2 Silberschatz, Galvin and Gagne ©2018 Objectives Delve into the details of file systems and their implementation Explore "ooting and file sharing Describe remote file systems, using NFS as an example Operating System Concepts – 10th dition 1!"# Silberschatz, Galvin and Gagne ©2018 File System $eneral-purpose computers can have multiple storage devices Devices can "e sliced into partitions, %hich hold volumes Volumes can span multiple partitions Each volume usually formatted into a file system # of file systems varies, typically dozens available to choose from Typical storage device organization) Operating System Concepts – 10th dition 1!"$ Silberschatz, Galvin and Gagne ©2018 Example Mount Points and File Systems - Solaris Operating System Concepts – 10th dition 1!"! Silberschatz, Galvin and Gagne ©2018 Partitions and Mounting Partition can be a volume containing a file system +* cooked-) or ra& – just a sequence of "loc,s %ith no file system Boot bloc, can point to boot volume or "oot loader set of "loc,s that contain enough code to ,now how to load the ,ernel from the file system 3r a boot management program for multi-os booting 'oot partition contains the 3S, other partitions can hold other -
File-System Implementation
CHAPTER File-System 11 Implementation As we saw in Chapter 10, the ®le system provides the mechanism for on-line storage and access to ®le contents, including data and programs. The ®le system resides permanently on secondary storage, which is designed to hold a large amount of data permanently. This chapter is primarily concerned with issues surrounding ®le storage and access on the most common secondary-storage medium, the disk. We explore ways to structure ®le use, to allocate disk space, to recover freed space, to track the locations of data, and to interface other parts of the operating system to secondary storage. Performance issues are considered throughout the chapter. Bibliographical Notes The MS-DOS FAT system is explained in[Norton and Wilton (1988)]. The internals of the BSD UNIX system are covered in full in[McKusick and Neville- Neil (2005)]. Details concerning ®le systems for Linux can be found in[Love (2010)]. The Google ®le system is described in[Ghemawat et al. (2003)]. FUSE can be found at http://fuse.sourceforge.net. Log-structured ®le organizations for enhancing both performance and consistency are discussed in[Rosenblum and Ousterhout (1991)], [Seltzer et al. (1993)], and[Seltzer et al. (1995)]. Algorithms such as balanced trees (and much more) are covered by[Knuth (1998)] and [Cormen et al. (2009)].[Silvers (2000)] discusses implementing the page cache in the NetBSD operating system. The ZFS source code for space maps can be found at http://src.opensolaris.org/source/xref/onnv/onnv- gate/usr/src/uts/common/fs/zfs/space map.c. The network ®le system (NFS) is discussed in[Callaghan (2000)]. -
Comparative Analysis of Distributed and Parallel File Systems' Internal Techniques
Comparative Analysis of Distributed and Parallel File Systems’ Internal Techniques Viacheslav Dubeyko Content 1 TERMINOLOGY AND ABBREVIATIONS ................................................................................ 4 2 INTRODUCTION......................................................................................................................... 5 3 COMPARATIVE ANALYSIS METHODOLOGY ....................................................................... 5 4 FILE SYSTEM FEATURES CLASSIFICATION ........................................................................ 5 4.1 Distributed File Systems ............................................................................................................................ 6 4.1.1 HDFS ..................................................................................................................................................... 6 4.1.2 GFS (Google File System) ....................................................................................................................... 7 4.1.3 InterMezzo ............................................................................................................................................ 9 4.1.4 CodA .................................................................................................................................................... 10 4.1.5 Ceph.................................................................................................................................................... 12 4.1.6 DDFS .................................................................................................................................................. -
Smaller Flight Data Recorders{
Available online at http://docs.lib.purdue.edu/jate Journal of Aviation Technology and Engineering 2:2 (2013) 45–55 Smaller Flight Data Recorders{ Yair Wiseman and Alon Barkai Bar-Ilan University Abstract Data captured by flight data recorders are generally stored on the system’s embedded hard disk. A common problem is the lack of storage space on the disk. This lack of space for data storage leads to either a constant effort to reduce the space used by data, or to increased costs due to acquisition of additional space, which is not always possible. File compression can solve the problem, but carries with it the potential drawback of the increased overhead required when writing the data to the disk, putting an excessive load on the system and degrading system performance. The author suggests the use of an efficient compressed file system that both compresses data in real time and ensures that there will be minimal impact on the performance of other tasks. Keywords: flight data recorder, data compression, file system Introduction A flight data recorder is a small line-replaceable computer unit employed in aircraft. Its function is recording pilots’ inputs, electronic inputs, sensor positions and instructions sent to any electronic systems on the aircraft. It is unofficially referred to as a "black box". Flight data recorders are designed to be small and thoroughly fabricated to withstand the influence of high speed impacts and extreme temperatures. A flight data recorder from a commercial aircraft can be seen in Figure 1. State-of-the-art high density flash memory devices have permitted the solid state flight data recorder (SSFDR) to be implemented with much larger memory capacity. -
Zfs-Ascalabledistributedfilesystemusingobjectdisks
zFS-AScalableDistributedFileSystemUsingObjectDisks Ohad Rodeh Avi Teperman [email protected] [email protected] IBM Labs, Haifa University, Mount Carmel, Haifa 31905, Israel. Abstract retrieves the data block from the remote machine. zFS also uses distributed transactions and leases, instead of group- zFS is a research project aimed at building a decentral- communication and clustering software. We intend to test ized file system that distributes all aspects of file and stor- and show the effectiveness of these two features in our pro- age management over a set of cooperating machines inter- totype. connected by a high-speed network. zFS is designed to be zFS has six components: a Front End (FE), a Cooper- a file system that scales from a few networked computers to ative Cache (Cache), a File Manager (FMGR), a Lease several thousand machines and to be built from commodity Manager (LMGR), a Transaction Server (TSVR), and an off-the-shelf components. Object Store (OSD). These components work together to The two most prominent features of zFS are its coop- provide applications/users with a distributed file system. erative cache and distributed transactions. zFS integrates The design of zFS addresses, and is influenced by, issues the memory of all participating machines into one coher- of fault tolerance, security and backup/mirroring. How- ent cache. Thus, instead of going to the disk for a block ever, in this article, we focus on the zFS high-level archi- of data already in one of the machine memories, zFS re- tecture and briefly describe zFS’s fault tolerance character- trieves the data block from the remote machine. -
The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed. -
Sun Storedge™ QFS and Sun Storedge SAM-FS Software Installation and Configuration Guide
Sun StorEdge™ QFS and Sun StorEdge SAM-FS Software Installation and Configuration Guide Release 4.2 Sun Microsystems, Inc. www.sun.com Part No. 817-7722-10 September 2004, Revision A Submit comments about this document at: http://www.sun.com/hwdocs/feedback Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries. This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, SunOS, SunSolve, Java, JavaScript, Solstice DiskSuite, and StorEdge are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. -
Distributed Storage
Distributed and Federated Storage How to store things… in… many places... (maybe) CS2510 Presented by: wilkie [email protected] University of Pittsburgh Recommended Reading (or Skimming) • NFS: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473 • WAFL: https://dl.acm.org/citation.cfm?id=1267093 • Hierarchical File Systems are Dead (Margo Seltzer, 2009): https://www.eecs.harvard.edu/margo/papers/hotos09/paper.pdf • Chord (Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan, 2001): https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf • Kademlia (Petar Maymounkov, David Mazières, 2002): https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf • BitTorrent Overview: http://web.cs.ucla.edu/classes/cs217/05BitTorrent.pdf • IPFS (Juan Benet, 2014): https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ ipfs.draft3.pdf (served via IPFS, neat) Network File System NFS: A Traditional and Classic Distributed File System Problem • Storage is cheap. • YES. This is a problem in a classical sense. • People are storing more stuff and want very strong storage guarantees. • Networked (web) applications are global and people want strong availability and stable speed/performance (wherever in the world they are.) Yikes! • More data == Greater probability of failure • We want consistency (correct, up-to-date data) • We want availability (when we need it) • We want partition tolerance (even in the presence of downtime) • Oh. Hmm. Well, heck. • That’s hard (technically impossible) so what can we do? Lightning Round: Distributed Storage • Network File System (NFS) • We will gloss over details, here, Unreliable but the papers are definitely worth a read. • It invented the Virtual File System (VFS) • Basically, though, it is an early attempt to investigate the trade-offs for client/server file consistency Most Reliable?? NFS System Model • Each client connects directly to the server.