Smaller Flight Data Recorders{
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HTTP-FUSE Xenoppix
HTTP-FUSE Xenoppix Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima† Kenji Kitagawa†† Shuichi Tashiro††† National Institute of Advanced Industrial Science and Technology† Alpha Systems Inc.†† Information-Technology Promotion Agency, Japan††† {k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp [email protected], [email protected] Abstract a CD-ROM. Furthermore it requires remaking the entire CD-ROM when a bit of data is up- dated. The other solution is a Virtual Machine We developed “HTTP-FUSE Xenoppix” which which enables us to install many OSes and ap- boots Linux, Plan9, and NetBSD on Virtual plications easily. However, that requires in- Machine Monitor “Xen” with a small bootable stalling virtual machine software. (6.5MB) CD-ROM. The bootable CD-ROM in- cludes boot loader, kernel, and miniroot only We have developed “Xenoppix” [1], which and most part of files are obtained via Internet is a combination of CD/DVD bootable Linux with network loopback device HTTP-FUSE “KNOPPIX” [2] and Virtual Machine Monitor CLOOP. It is made from cloop (Compressed “Xen” [3, 4]. Xenoppix boots Linux (KNOP- Loopback block device) and FUSE (Filesys- PIX) as Host OS and NetBSD or Plan9 as Guest tem USErspace). HTTP-FUSE CLOOP can re- OS with a bootable DVD only. KNOPPIX construct a block device from many small block is advanced in automatic device detection and files of HTTP servers. In this paper we describe driver integration. It prepares the Xen environ- the detail of the implementation and its perfor- ment and Guest OSes don’t need to worry about mance. lack of device drivers. -
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise Abstract This paper will document a process to create a custom Live CD for secure remote incident handling on Windows and Linux systems. The process will include how to configure SSH for remote access to the Live CD even when running behind a NAT device. The combination of customization and secure remote access will make this process valuable to incident handlers working in enterprise environments with limited remote IT support. Bert Hayes, [email protected] How to Create a Custom Live CD for Remote Incident Handling 2 Table of Contents Abstract ...........................................................................................................................................1 1. Introduction ............................................................................................................................5 2. Making Your Own Customized Debian GNU/Linux Based System........................................7 2.1. The Development Environment ......................................................................................7 2.2. Making Your Dream Incident Handling System...............................................................9 2.3. Hardening the Base Install.............................................................................................11 2.3.1. Managing Root Access with Sudo..........................................................................11 2.4. Randomizing the Handler Password at Boot Time ........................................................12 -
Deep Compression
COVER STORY Cloop DEEPBlock device compression COMPRESSION with the cloop module KYRO, photocase.com KYRO, The cloop module lets you manage compression at the block device 512 bytes), and they are usually used for random access storage like ramdisks, level. Read on to learn how Knoppix and other Live CDs fit all that CD-ROMs, floppy disks, hard disks, and hard disk partitions. software on a single disc. BY KLAUS KNOPPER Filesystems are a logical representa- tion of ordered data that is often present loop is a kernel block device block-based devices. If you look into the on a block device. A filesystem turns raw module used in Live CDs such output of ls -l /dev, you will easily recog- data into the familiar directory/file view. Cas Knoppix. The cloop module nize these devices by the prefix – c for The mount command is the bridge be- allows the system to read compressed character-based and b for block-based tween a block device partition and its data, usually from a file, thus creating devices – at the beginning of the output projection into a mount point directory. compressed virtual disks. Using cloop, line (see Listing 1). a Linux installation of about 2GB fits on Character-based devices, such as tape Cloop: A Compressed a single 700MB CD-R disc. In this article, drives, mice, and gamepads, provide se- Loopback Block Device I look at how cloop works and provide quential, character-by-character access One block device included in any Linux some insight into general kernel struc- to data. -
Nxadmin CLI Reference Guide Unity Iv Contents
HYPER-UNIFIED STORAGE nxadmin Command Line Interface Reference Guide NEXSAN | 325 E. Hillcrest Drive, Suite #150 | Thousand Oaks, CA 91360 USA Printed Thursday, July 26, 2018 | www.nexsan.com Copyright © 2010—2018 Nexsan Technologies, Inc. All rights reserved. Trademarks Nexsan® is a trademark or registered trademark of Nexsan Technologies, Inc. The Nexsan logo is a registered trademark of Nexsan Technologies, Inc. All other trademarks and registered trademarks are the property of their respective owners. Patents This product is protected by one or more of the following patents, and other pending patent applications worldwide: United States patents US8,191,841, US8,120,922; United Kingdom patents GB2466535B, GB2467622B, GB2467404B, GB2296798B, GB2297636B About this document Unauthorized use, duplication, or modification of this document in whole or in part without the written consent of Nexsan Corporation is strictly prohibited. Nexsan Technologies, Inc. reserves the right to make changes to this manual, as well as the equipment and software described in this manual, at any time without notice. This manual may contain links to web sites that were current at the time of publication, but have since been moved or become inactive. It may also contain links to sites owned and operated by third parties. Nexsan is not responsible for the content of any such third-party site. Contents Contents Contents iii Chapter 1: Accessing the nxadmin and nxcmd CLIs 15 Connecting to the Unity Storage System using SSH 15 Prerequisite 15 Connecting to the Unity -
QEMU Version 4.2.0 User Documentation I
QEMU version 4.2.0 User Documentation i Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1 Features :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 QEMU PC System emulator ::::::::::::::::::: 2 2.1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.2 Quick Start::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.3 Invocation :::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3.1 Standard options :::::::::::::::::::::::::::::::::::::::::: 3 2.3.2 Block device options :::::::::::::::::::::::::::::::::::::: 12 2.3.3 USB options:::::::::::::::::::::::::::::::::::::::::::::: 23 2.3.4 Display options ::::::::::::::::::::::::::::::::::::::::::: 23 2.3.5 i386 target only::::::::::::::::::::::::::::::::::::::::::: 30 2.3.6 Network options :::::::::::::::::::::::::::::::::::::::::: 31 2.3.7 Character device options:::::::::::::::::::::::::::::::::: 38 2.3.8 Bluetooth(R) options ::::::::::::::::::::::::::::::::::::: 42 2.3.9 TPM device options :::::::::::::::::::::::::::::::::::::: 43 2.3.10 Linux/Multiboot boot specific ::::::::::::::::::::::::::: 44 2.3.11 Debug/Expert options ::::::::::::::::::::::::::::::::::: 45 2.3.12 Generic object creation :::::::::::::::::::::::::::::::::: 54 2.3.13 Device URL Syntax ::::::::::::::::::::::::::::::::::::: 66 2.4 Keys in the graphical frontends :::::::::::::::::::::::::::::::: 69 2.5 Keys in the character backend multiplexer ::::::::::::::::::::: 69 2.6 QEMU Monitor ::::::::::::::::::::::::::::::::::::::::::::::: 70 2.6.1 Commands ::::::::::::::::::::::::::::::::::::::::::::::: -
The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed. -
The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S. -
The Illusion of Space and the Science of Data Compression And
The Illusion of Space and the Science of Data Compression and Deduplication Bruce Yellin EMC Proven Professional Knowledge Sharing 2010 Bruce Yellin Advisory Technology Consultant EMC Corporation [email protected] Table of Contents What Was Old Is New Again ......................................................................................................... 4 The Business Benefits of Saving Space ....................................................................................... 6 Data Compression Strategies ....................................................................................................... 9 Data Compression Basics ....................................................................................................... 10 Compression Bakeoff .............................................................................................................. 13 Data Deduplication Strategies .................................................................................................... 16 Deduplication - Theory of Operation ....................................................................................... 16 File Level Deduplication - Single Instance Storage ................................................................. 21 Fixed-Block Deduplication ....................................................................................................... 23 Variable-Block Deduplication .................................................................................................. 24 Content-Aware Deduplication -
Data Compression in Solid State Storage
Data Compression in Solid State Storage John Fryar [email protected] Santa Clara, CA August 2013 1 Acknowledgements This presentation would not have been possible without the counsel, hard work and graciousness of the following individuals and/or organizations: Raymond Savarda Sandgate Technologies Santa Clara, CA August 2013 2 Disclaimers The opinions expressed herein are those of the author and do not necessarily represent those of any other organization or individual unless specifically cited. A thorough attempt to acknowledge all sources has been made. That said, we’re all human… Santa Clara, CA August 2013 3 Learning Objectives At the conclusion of this tutorial the audience will have been exposed to: • The different types of Data Compression • Common Data Compression Algorithms • The Deflate/Inflate (GZIP/GUNZIP) algorithms in detail • Implementation Options (Software/Hardware) • Impacts of design parameters in Performance • SSD benefits and challenges • Resources for Further Study Santa Clara, CA August 2013 4 Agenda • Background, Definitions, & Context • Data Compression Overview • Data Compression Algorithm Survey • Deflate/Inflate (GZIP/GUNZIP) in depth • Software Implementations • HW Implementations • Tradeoffs & Advanced Topics • SSD Benefits and Challenges • Conclusions Santa Clara, CA August 2013 5 Definitions Item Description Comments Open A system which will compress Must strictly adhere to standards System data for use by other entities. on compress / decompress I.E. the compressed data will algorithms exit the system Interoperability among vendors mandated for Open Systems Closed A system which utilizes Can support a limited, optimized System compressed data internally but subset of standard. does not expose compressed Also allows custom algorithms data to the outside world No Interoperability req’d. -
Building a Self-Contained Auto-Configuring Linux System On
Building a self-contained auto-configuring Linux system on an iso9660 filesystem Klaus Knopper [email protected] ¡ http://www.knopper.net/knoppix/ Abstract Bootable CD-Roms with a small Linux rescue system in business card size [1, 2] or regular size live demonstration CDs [3] are becoming popular re- cently. Also, some of the commercial Linux distributors as well as non-profit Open Source groups are developing self-running demos that are preconfigured for certain hardware, or contain a configuration frontend. Knoppix (Knopper’s *nix) is an attempt to not only create a fully featured rescue/demo system on a single CD, but also to unburden the user from the task of hardware identi- fication and configuration of drivers, devices and X11 for his or her specific hardware. The resulting product is supposed to be a platform CD with a stable GNU/Linux base system, that can be used to customize static installations for a specific purpose. Goal: Creating a fully functional and usable Reducing space limitations by compression Linux system running completely from a sin- The core system of about 200 MB (uncompressed) is gle CD currently based on the popular RedHat [4] distribution A frequently asked question asked by people who ”just and contains all basic commands and tools for a generic want to have a glance” on Linux to check out how use- Linux system. That leaves, on a standard 650 MB CD- ful it could be for them is, ”How can I test Linux with- Rom, over 400 MB for custom applications, which can out having to change anything on my computer?”. -
Use Style: Paper Title
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diponegoro University Institutional Repository On The Implementation of ZFS (Zettabyte File System) Storage System Eko D. Widianto, Agung B. Prasetijo, and Ahmad Ghufroni Department of Computer Engineering, Faculty of Engineering – Diponegoro University Jl. Prof. Soedarto, SH, Tembalang, Semarang, Indonesia E-mail: [email protected]; [email protected]; [email protected] Abstract – Digital data storage is very critical in computer 32 KB, ZFS is 200MB/s faster than EXT3. The throughput of systems. Storage devices used to store data may at any time suffer write process in ZFS is as good as EXT3 for the size of I/O from damage caused by its lifetime, resource failure or factory less than 32 KB, whilst, for the size of I/O larger than 32 KB defects. Such damage may lead to loss of important data. The risk ZFS is 150 MB/s faster compared to EXT3. of data loss in the event of device damage can be minimized by Literature [2] explored the performance, capacity and building a storage system that supports redundancy. The design of storage based on ZFS (Zettabyte File System) aims at building a integrity of ZFS raidz. The tests for its read and write speed is storage system that supports redundancy and data integrity without as follows: in mirror mode using two 4TB hard drive, ZFS has requiring additional RAID controllers. When the system fails on 488 MB/s for read speed and 106MB/s for write speed. -
Building Embedded Linux Systems with Buildroot
Embedded Linux Conference Building embedded Linux systems with Buildroot Thomas Petazzoni Free Electrons http://free-electrons.com/ 1 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Rights to copy © Copyright 2009, Free Electrons [email protected] Document sources, updates and translations: http://free-electrons.com/docs/buildroot Corrections, suggestions, contributions and translations are welcome! Attribution ± ShareAlike 3.0 Latest update: Apr 28, 2009 You are free to copy, distribute, display, and perform the work to make derivative works to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode 2 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com Leveraging free software Thousands of free software packages are available and can be leveraged to build embedded systems With free software You have control over the source Bugs can be fixed New features can be added Your system can be customized In theory, the system designers and developers have a lot of flexibility thanks to free software However, leveraging the existing free software packages may not be very easy.