High Speed Lossless Image Compression

Total Page:16

File Type:pdf, Size:1020Kb

High Speed Lossless Image Compression High Speed Lossless Image Compression Hendrik Siedelmann12, Alexander Wender1, and Martin Fuchs1 1 University of Stuttgart, Germany 2 Heidelberg University, Germany Abstract. We introduce a simple approach to lossless image compression, which makes use of SIMD vectorization at every processing step to provide very high speed on modern CPUs. This is achieved by basing the compression on delta cod- ing for prediction and bit packing for the actual compression, allowing a tuneable tradeoff between efficiency and speed, via the block size used for bit packing. The maximum achievable speed surpasses main memory bandwidth on the tested CPU, as well as the speed of all previous methods that achieve at least the same coding efficiency. 1 Introduction For applications which need to process large amounts of image data such as high speed video or high resolution light fields, the I/O subsystem can easily become the bottle- neck, even when using a RAID0 or SSDs for storage. This makes compression an at- tractive tool to widen this bottleneck, increasing overall performance. As lossy com- pression incurs signal degradation and may interfere with further processing, we will only consider lossless compression in the following. While dictionary based compres- sion methods like lzo [18] can reach a high bandwidth, the compression ratio of such generic compression methods is quite low compared to dedicated image compression methods. However, research in lossless image compression has mainly been concerned with the maximization of the compression ratio, and even relatively fast image com- pression schemes like jpeg-ls are not able to keep up with the transfer rates of fast I/O configurations. In this article, we present a simple lossless image compression scheme, which makes use of the SIMD instructions of modern CPUs to achieve extremely high per- formance. Our implementation allows a configurable tradeoff between speed and com- pression and exceeds the memory transfer speeds of modern CPUs in its fastest con- figuration, allowing incorporation of lossless compression into many areas where com- pression was not feasible before. Our specific use case, which motivated this work, is an example of such an application: recording a very large and dense light field data set (sev- eral terabytes in size), requiring a continuous compression bandwidth of 360 MiB=s, a rate which the used I/O configuration was not able to guarantee on its own. 1.1 Applications of Lossless Image Compression Compression is always a tradeoff of processing resources against bandwidth and stor- age. While lossy compression provides high compression ratios, its application is lim- ited to areas where the distortion of the signal due to lossy compression does not pose 2 Siedelmann, Wender, Fuchs 10000 simdcomp main memory 512256 128 64 4xRAID0 1024 32 1000 BBP 2048 16 8 ffvhuff LZO 4 lzjbquicklzdensitypithylzf fastlz FFV1 x264 100 x265 snappy lz4 jpeg-ls wflz lznt1 fari 10 yalz77 gzip jpeg2000 gipfeli compress xpress zstd 1 single core bandwidth in MiB/s in bandwidth core single 0.1 1 2 3 compression ratio Fig. 1. Bandwidth vs. compression ratio for all tested methods, showing single core results on TM an Intel R Core i7-2600 CPU on the “blue sky” test sequence from the SVT data set [12]. “BBP” denotes our method for several block sizes from 2048 to 4 bytes. An example 4xRAID0 configuration and main memory bandwidth are included for comparison. The simdcomp method is the C implementation of [14] and can, in general, not compress image data, but is shown for bandwidth comparison. For lzo, and ffvhuff all configurations are shown, as well as all available presets for x264 and x265. a problem. But in some cases losses are not acceptable. Examples for this include ref- erence data sets for image processing or sophisticated image processing, like super- resolution. In this case, lossless compression may still provide an overall performance increase due to bandwidth savings as well as reduced storage requirements. However lossless compression provides less compression, which reduces the gain obtained from using it. In many capture scenarios, the required bandwidth for on the fly compression, before initial storage, imposes a hard constraint. This is addressed by the proposed scheme, as compression bandwidth can be adjusted to speeds that surpass memory transfer speeds, a hard limit for any hardware configuration. 2 Related Work In the following, we briefly discuss lossless compression methods that focus on high speed, see Fig. 1 for an overview of evaluated methods. The methods are ordered by the dimensionality of the compression scheme, starting with generic 1D compression algo- rithms. Any compression method with lower dimensionality may be used to compress data with a higher dimensionality at reduced efficiency, as correlation in the missing dimensions cannot be exploited. On the other hand, lower dimensionality can lead to lower algorithmic complexity and therefore higher speed. While the method discussed High Speed Lossless Image Compression 3 in this paper is a pure image compression method, we will regard and evaluate com- pression from the basis of compressing a video stream, which allows the inclusion of advanced lossless video compression methods like AVC and HEVC which allow higher compression ratios by exploiting the 3D correlation. Also applications for high band- width image processing like light field, or high speed video capture, may allow the use of video compression methods, making an evaluation based on video data adequate. 2.1 Dictionary and 1D Compression General purpose compression methods like deflate (zlib/gzip) [10] or bzip2 [23] achieve good compression ratios for most types of inputs, but are quite slow, with a maximum bandwidth of around 30 MiB=s on an off-the-shelf Intel Core i7-2600 CPU. Faster methods, including lzo, lz4 and gipfeli [18,9,15] are more directly based on the original LZ77 compression scheme [28] and provide a bandwidth of up to 152 MiB=s for our configuration, see Fig. 1. This performance has led to the utiliza- tion for lossless 4K image transmission [11], but compared to image based methods the compression ratio is rather poor, as dictionary based methods are not well suited to the task of image coding. Specialized methods adapted for specific tasks, like inte- ger or floating point compression, provide a much higher speed of several gigabytes per second, by using a simple bit packing approach [8,14] and exploiting the SIMD instruc- tions provided by modern CPU architectures [14]. However, those methods operate on 32 bit integers or 64 bit floating point values and are thus not directly applicable to the compression of 8 bit image data. We have developed an algorithm which uses SIMD bit packing for the actual compression, combining it with a prediction scheme and small block sizes, allowing efficient compression of image data. See section 3 for details. 2.2 Image Compression Dedicated lossless image compression methods like jpeg-ls [27] peak at around 25 MiB=s, with modifications reaching 75 MiB=s on an Intel R CoreTM i7-920 proces- sor at 2:67 GHz [26]. The jpeg-ls codec was standardized in 1999 and is still widely used as the baseline for the evaluation of lossless image compression methods. To our knowledge there are no significantly faster methods available, even though the gap to the fastest 1D compression method [14] amounts to more than two orders of magnitude. Later works mainly concentrate on increasing compression efficiency at reduced speed, which is not the focus of this work. 2.3 Video Compression State of the art video standards like HEVC, as well as its predecessor AVC, include lossless profiles which provide high compression ratios. The ffvhuff coder from the ffmpeg library [3] based on HuffYUV [24], which uses the jpeg-ls predictor together with simple Huffmann coding, obtains a speed of 343 MiB=s, the highest speed for any video codec we evaluated, see Fig. 1. Another interesting compressor is the ffv1 coder [17] at 44 MiB=s, also from ffmpeg, which combines a jpeg-ls style 4 Siedelmann, Wender, Fuchs predictor with a context adaptive entropy coder, based on similiar principles as the one from AVC, with context adaption over several frames. The ffv1 coder achieves a compression ratio and speed competitive to AVC, see Fig. 1. 2.4 GPU Aided Compression There have been various efforts to improve the performance of different compression techniques by using the massively parallel computation capabilities of modern GPUs. For 1D compression a text based method has been ported to the GPU by Ozsoy et al. [21] demonstrating a speedup of up to 2.21x for the GPU solution. Floating point compression based on bit packing has also been shown to reach a speedup of 5x [20], but at the cost of a reduced compression efficiency and in comparison to a CPU version which does not make use of SIMD for bit packing, like implemented in [14]. An approach for GPU based predictive lossless image coding has been presented by Kau and Chen, showing a speedup of up to 5x with a combined system utilizing GPU and CPU [13], however absolute performance is quite low at less than 1 MiB=s. The cuj2k library, implementing jpeg2000 on the GPU provides similar performance to a parallel jpeg2000 implementation for the CPU [2]. The work presented by Treib et al. [25], implementing a simple wavelet based compressor, provides results with slightly worse compression than jpeg2000 but with a compression speed of up to 700 MiB=s, which is significantly higher than previous approaches. The difficulties in porting standard image compression methods to the GPU are ana- lyzed by Richter and Simon [22], specifically for jpeg and jpeg2000. They conclude that especially the entropy coding part proves difficult for modern GPUs, together with the codestream build-up.
Recommended publications
  • A Survey Paper on Different Speech Compression Techniques
    Vol-2 Issue-5 2016 IJARIIE-ISSN (O)-2395-4396 A Survey Paper on Different Speech Compression Techniques Kanawade Pramila.R1, Prof. Gundal Shital.S2 1 M.E. Electronics, Department of Electronics Engineering, Amrutvahini College of Engineering, Sangamner, Maharashtra, India. 2 HOD in Electronics Department, Department of Electronics Engineering , Amrutvahini College of Engineering, Sangamner, Maharashtra, India. ABSTRACT This paper describes the different types of speech compression techniques. Speech compression can be divided into two main types such as lossless and lossy compression. This survey paper has been written with the help of different types of Waveform-based speech compression, Parametric-based speech compression, Hybrid based speech compression etc. Compression is nothing but reducing size of data with considering memory size. Speech compression means voiced signal compress for different application such as high quality database of speech signals, multimedia applications, music database and internet applications. Today speech compression is very useful in our life. The main purpose or aim of speech compression is to compress any type of audio that is transfer over the communication channel, because of the limited channel bandwidth and data storage capacity and low bit rate. The use of lossless and lossy techniques for speech compression means that reduced the numbers of bits in the original information. By the use of lossless data compression there is no loss in the original information but while using lossy data compression technique some numbers of bits are loss. Keyword: - Bit rate, Compression, Waveform-based speech compression, Parametric-based speech compression, Hybrid based speech compression. 1. INTRODUCTION -1 Speech compression is use in the encoding system.
    [Show full text]
  • Arxiv:2004.10531V1 [Cs.OH] 8 Apr 2020
    ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, increasing per- formance and enhancing it and improving its interaction with other data analy- sis ecosystems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly to improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased during the LHC era. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly: there are sig- nificant trade-offs between the increased CPU cost for reading and writing files and the reduce storage space. 1 Introduction In the past years LHC experiments are commissioned and now manages about an exabyte of storage for analysis purposes, approximately half of which is used for archival purposes, and half is used for traditional disk storage. Meanwhile for HL-LHC storage requirements per year are expected to be increased by factor 10 [1]. arXiv:2004.10531v1 [cs.OH] 8 Apr 2020 Looking at these predictions, we would like to state that storage will remain one of the major cost drivers and at the same time the bottlenecks for HEP computing.
    [Show full text]
  • Lossless Compression of Audio Data
    CHAPTER 12 Lossless Compression of Audio Data ROBERT C. MAHER OVERVIEW Lossless data compression of digital audio signals is useful when it is necessary to minimize the storage space or transmission bandwidth of audio data while still maintaining archival quality. Available techniques for lossless audio compression, or lossless audio packing, generally employ an adaptive waveform predictor with a variable-rate entropy coding of the residual, such as Huffman or Golomb-Rice coding. The amount of data compression can vary considerably from one audio waveform to another, but ratios of less than 3 are typical. Several freeware, shareware, and proprietary commercial lossless audio packing programs are available. 12.1 INTRODUCTION The Internet is increasingly being used as a means to deliver audio content to end-users for en­ tertainment, education, and commerce. It is clearly advantageous to minimize the time required to download an audio data file and the storage capacity required to hold it. Moreover, the expec­ tations of end-users with regard to signal quality, number of audio channels, meta-data such as song lyrics, and similar additional features provide incentives to compress the audio data. 12.1.1 Background In the past decade there have been significant breakthroughs in audio data compression using lossy perceptual coding [1]. These techniques lower the bit rate required to represent the signal by establishing perceptual error criteria, meaning that a model of human hearing perception is Copyright 2003. Elsevier Science (USA). 255 AU rights reserved. 256 PART III / APPLICATIONS used to guide the elimination of excess bits that can be either reconstructed (redundancy in the signal) orignored (inaudible components in the signal).
    [Show full text]
  • The H.264 Advanced Video Coding (AVC) Standard
    Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered.
    [Show full text]
  • Understanding Compression of Geospatial Raster Imagery
    Understanding Compression of Geospatial Raster Imagery Document Overview This document was created for the North Carolina Geographic Information and Coordinating Council (GICC), http://ncgicc.com, by the GIS Technical Advisory Committee (TAC). Its purpose is to serve as a best practice or guidance document for GIS professionals that are compressing raster images. This document only addresses compressing geospatial raster data and specifically aerial or orthorectified imagery. It does not address compressing LiDAR data. Compression Overview Compression is the process of making data more compact so it occupies less disk storage space. The primary benefit of compressing raster data is reduction in file size. An added benefit is greatly improved performance over a network, because the user is transferring less data from a server to an application; however, compressed data must be decompressed to display in GIS software. The result may be slower raster display in GIS software than data that is not compressed. Compressed data can also increase CPU requirements on the server or desktop. Glossary of Common Terms Raster is a spatial data model made of rows and columns of cells. Each cell contains an attribute value identifying its color and location coordinate. Geospatial raster data like satellite images and aerial photographs are typically larger on average than vector data (predominately points, lines, or polygons). Compression is the process of making a (raster) file smaller while preserving all or most of the data it contains. Imagery compression enables storage of more data (image files) on a disk than if they were uncompressed. Compression ratio is the amount or degree of reduction of an image's file size.
    [Show full text]
  • Nxadmin CLI Reference Guide Unity Iv Contents
    HYPER-UNIFIED STORAGE nxadmin Command Line Interface Reference Guide NEXSAN | 325 E. Hillcrest Drive, Suite #150 | Thousand Oaks, CA 91360 USA Printed Thursday, July 26, 2018 | www.nexsan.com Copyright © 2010—2018 Nexsan Technologies, Inc. All rights reserved. Trademarks Nexsan® is a trademark or registered trademark of Nexsan Technologies, Inc. The Nexsan logo is a registered trademark of Nexsan Technologies, Inc. All other trademarks and registered trademarks are the property of their respective owners. Patents This product is protected by one or more of the following patents, and other pending patent applications worldwide: United States patents US8,191,841, US8,120,922; United Kingdom patents GB2466535B, GB2467622B, GB2467404B, GB2296798B, GB2297636B About this document Unauthorized use, duplication, or modification of this document in whole or in part without the written consent of Nexsan Corporation is strictly prohibited. Nexsan Technologies, Inc. reserves the right to make changes to this manual, as well as the equipment and software described in this manual, at any time without notice. This manual may contain links to web sites that were current at the time of publication, but have since been moved or become inactive. It may also contain links to sites owned and operated by third parties. Nexsan is not responsible for the content of any such third-party site. Contents Contents Contents iii Chapter 1: Accessing the nxadmin and nxcmd CLIs 15 Connecting to the Unity Storage System using SSH 15 Prerequisite 15 Connecting to the Unity
    [Show full text]
  • FFV1 Video Codec Specification
    FFV1 Video Codec Specification by Michael Niedermayer [email protected] Contents 1 Introduction 2 2 Terms and Definitions 2 2.1 Terms ................................................. 2 2.2 Definitions ............................................... 2 3 Conventions 3 3.1 Arithmetic operators ......................................... 3 3.2 Assignment operators ........................................ 3 3.3 Comparison operators ........................................ 3 3.4 Order of operation precedence .................................... 4 3.5 Range ................................................. 4 3.6 Bitstream functions .......................................... 4 4 General Description 5 4.1 Border ................................................. 5 4.2 Median predictor ........................................... 5 4.3 Context ................................................ 5 4.4 Quantization ............................................. 5 4.5 Colorspace ............................................... 6 4.5.1 JPEG2000-RCT ....................................... 6 4.6 Coding of the sample difference ................................... 6 4.6.1 Range coding mode ..................................... 6 4.6.2 Huffman coding mode .................................... 9 5 Bitstream 10 5.1 Configuration Record ......................................... 10 5.1.1 In AVI File Format ...................................... 11 5.1.2 In ISO/IEC 14496-12 (MP4 File Format) ......................... 11 5.1.3 In NUT File Format ....................................
    [Show full text]
  • Lossy Audio Compression Identification
    2018 26th European Signal Processing Conference (EUSIPCO) Lossy Audio Compression Identification Bongjun Kim Zafar Rafii Northwestern University Gracenote Evanston, USA Emeryville, USA [email protected] zafar.rafi[email protected] Abstract—We propose a system which can estimate from an compression parameters from an audio signal, based on AAC, audio recording that has previously undergone lossy compression was presented in [3]. The first implementation of that work, the parameters used for the encoding, and therefore identify the based on MP3, was then proposed in [4]. The idea was to corresponding lossy coding format. The system analyzes the audio signal and searches for the compression parameters and framing search for the compression parameters and framing conditions conditions which match those used for the encoding. In particular, which match those used for the encoding, by measuring traces we propose a new metric for measuring traces of compression of compression in the audio signal, which typically correspond which is robust to variations in the audio content and a new to time-frequency coefficients quantized to zero. method for combining the estimates from multiple audio blocks The first work to investigate alterations, such as deletion, in- which can refine the results. We evaluated this system with audio excerpts from songs and movies, compressed into various coding sertion, or substitution, in audio signals which have undergone formats, using different bit rates, and captured digitally as well lossy compression, namely MP3, was presented in [5]. The as through analog transfer. Results showed that our system can idea was to measure traces of compression in the signal along identify the correct format in almost all cases, even at high bit time and detect discontinuities in the estimated framing.
    [Show full text]
  • Comparison of Image Compressions: Analog Transformations P
    Proceedings Comparison of Image Compressions: Analog † Transformations P Jose Balsa P CITIC Research Center, Universidade da Coruña (University of A Coruña), 15071 A Coruña, Spain; [email protected] † Presented at the 3rd XoveTIC Conference, A Coruña, Spain, 8–9 October 2020. Published: 21 August 2020 Abstract: A comparison between the four most used transforms, the discrete Fourier transform (DFT), discrete cosine transform (DCT), the Walsh–Hadamard transform (WHT) and the Haar- wavelet transform (DWT), for the transmission of analog images, varying their compression and comparing their quality, is presented. Additionally, performance tests are done for different levels of white Gaussian additive noise. Keywords: analog image transformation; analog image compression; analog image quality 1. Introduction Digitized image coding systems employ reversible mathematical transformations. These transformations change values and function domains in order to rearrange information in a way that condenses information important to human vision [1]. In the new domain, it is possible to filter out relevant information and discard information that is irrelevant or of lesser importance for image quality [2]. Both digital and analog systems use the same transformations in source coding. Some examples of digital systems that employ these transformations are JPEG, M-JPEG, JPEG2000, MPEG- 1, 2, 3 and 4, DV and HDV, among others. Although digital systems after transformation and filtering make use of digital lossless compression techniques, such as Huffman. In this work, we aim to make a comparison of the most commonly used transformations in state- of-the-art image compression systems. Typically, the transformations used to compress analog images work either on the entire image or on regions of the image.
    [Show full text]
  • 20130218 Technical White Paper.Bw.Jp
    Sending, Storing & Sharing Video With latakoo © Copyright latakoo. All rights reserved. Revised 11/12/2012 Table of contents Table of contents ................................................................................................... 1 1. Introduction ...................................................................................................... 2 2. Sending video & files with latakoo ...................................................................... 3 2.1 The latakoo app ............................................................................................ 3 2.2 Compression & upload ................................................................................. 3 2.3 latakoo minutes ............................................................................................ 4 3. The latakoo web interface .................................................................................. 4 3.1 Web interface requirements .......................................................................... 4 3.2 Logging into the dashboard .......................................................................... 4 3.3 Streaming video previews ............................................................................. 4 3.4 Downloading video ...................................................................................... 5 3.5 latakoo Pilot ................................................................................................. 5 3.6 Search and tagging ......................................................................................
    [Show full text]
  • Smaller Flight Data Recorders{
    Available online at http://docs.lib.purdue.edu/jate Journal of Aviation Technology and Engineering 2:2 (2013) 45–55 Smaller Flight Data Recorders{ Yair Wiseman and Alon Barkai Bar-Ilan University Abstract Data captured by flight data recorders are generally stored on the system’s embedded hard disk. A common problem is the lack of storage space on the disk. This lack of space for data storage leads to either a constant effort to reduce the space used by data, or to increased costs due to acquisition of additional space, which is not always possible. File compression can solve the problem, but carries with it the potential drawback of the increased overhead required when writing the data to the disk, putting an excessive load on the system and degrading system performance. The author suggests the use of an efficient compressed file system that both compresses data in real time and ensures that there will be minimal impact on the performance of other tasks. Keywords: flight data recorder, data compression, file system Introduction A flight data recorder is a small line-replaceable computer unit employed in aircraft. Its function is recording pilots’ inputs, electronic inputs, sensor positions and instructions sent to any electronic systems on the aircraft. It is unofficially referred to as a "black box". Flight data recorders are designed to be small and thoroughly fabricated to withstand the influence of high speed impacts and extreme temperatures. A flight data recorder from a commercial aircraft can be seen in Figure 1. State-of-the-art high density flash memory devices have permitted the solid state flight data recorder (SSFDR) to be implemented with much larger memory capacity.
    [Show full text]
  • Input Formats & Codecs
    Input Formats & Codecs Pivotshare offers upload support to over 99.9% of codecs and container formats. Please note that video container formats are independent codec support. Input Video Container Formats (Independent of codec) 3GP/3GP2 ASF (Windows Media) AVI DNxHD (SMPTE VC-3) DV video Flash Video Matroska MOV (Quicktime) MP4 MPEG-2 TS, MPEG-2 PS, MPEG-1 Ogg PCM VOB (Video Object) WebM Many more... Unsupported Video Codecs Apple Intermediate ProRes 4444 (ProRes 422 Supported) HDV 720p60 Go2Meeting3 (G2M3) Go2Meeting4 (G2M4) ER AAC LD (Error Resiliant, Low-Delay variant of AAC) REDCODE Supported Video Codecs 3ivx 4X Movie Alaris VideoGramPiX Alparysoft lossless codec American Laser Games MM Video AMV Video Apple QuickDraw ASUS V1 ASUS V2 ATI VCR-2 ATI VCR1 Auravision AURA Auravision Aura 2 Autodesk Animator Flic video Autodesk RLE Avid Meridien Uncompressed AVImszh AVIzlib AVS (Audio Video Standard) video Beam Software VB Bethesda VID video Bink video Blackmagic 10-bit Broadway MPEG Capture Codec Brooktree 411 codec Brute Force & Ignorance CamStudio Camtasia Screen Codec Canopus HQ Codec Canopus Lossless Codec CD Graphics video Chinese AVS video (AVS1-P2, JiZhun profile) Cinepak Cirrus Logic AccuPak Creative Labs Video Blaster Webcam Creative YUV (CYUV) Delphine Software International CIN video Deluxe Paint Animation DivX ;-) (MPEG-4) DNxHD (VC3) DV (Digital Video) Feeble Files/ScummVM DXA FFmpeg video codec #1 Flash Screen Video Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Forward Uncompressed Video Codec fox motion video FRAPS:
    [Show full text]