HTTP-FUSE Xenoppix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Venti Analysis and Memventi Implementation
Master’s thesis Venti analysis and memventi implementation Designing a trace-based simulator and implementing a venti with in-memory index Mechiel Lukkien [email protected] August 8, 2007 Committee: Faculty of EEMCS prof. dr. Sape J. Mullender DIES, Distributed and Embedded Systems ir. J. Scholten University of Twente ir. P.G. Jansen Enschede, The Netherlands 2 Abstract [The next page has a Dutch summary] Venti is a write-once content-addressed archival storage system, storing its data on magnetic disks: each data block is addressed by its 20-byte SHA-1 hash (called score). This project initially aimed to design and implement a trace-based simula- tor matching Venti behaviour closely enough to be able to use it to determine good configuration parameters (such as cache sizes), and for testing new opti- misations. A simplistic simulator has been implemented, but it does not model Venti behaviour accurately enough for its intended goal, nor is it polished enough for use. Modelled behaviour is inaccurate because the advanced optimisations of Venti have not been implemented in the simulator. However, implementation suggestions for these optimisations are presented. In the process of designing the simulator, the Venti source code has been investigated, the optimisations have been documented, and disk and Venti per- formance have been measured. This allowed for recommendations about per- formance, even without a simulator. Beside magnetic disks, also flash memory and the upcoming mems-based storage devices have been investigated for use with Venti; they may be usable in the near future, but require explicit support. The focus of this project has shifted towards designing and implementing memventi, an alternative implementation of the venti protocol. -
CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N
CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N. Gutierrez Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086 DECEPTIVE MEMORY SYSTEMS ADissertation Submitted to the Faculty of Purdue University by Christopher N. Gutierrez In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Eugene H. Spa↵ord, Co-Chair Department of Computer Science Dr. Saurabh Bagchi, Co-Chair Department of Computer Science Dr. Dongyan Xu Department of Computer Science Dr. Mathias Payer Department of Computer Science Approved by: Dr. Voicu Popescu by Dr. William J. Gorman Head of the Graduate Program iii This work is dedicated to my wife, Gina. Thank you for all of your love and support. The moon awaits us. iv ACKNOWLEDGMENTS Iwould liketothank ProfessorsEugeneSpa↵ord and SaurabhBagchi for their guidance, support, and advice throughout my time at Purdue. Both have been instru mental in my development as a computer scientist, and I am forever grateful. I would also like to thank the Center for Education and Research in Information Assurance and Security (CERIAS) for fostering a multidisciplinary security culture in which I had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas tongia for their technical support and Thomas Yurek for his programming assistance for the experimental evaluation. I am grateful for the valuable feedback provided by the members of my thesis committee, Professor Dongyen Xu, and Professor Math ias Payer. -
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise Abstract This paper will document a process to create a custom Live CD for secure remote incident handling on Windows and Linux systems. The process will include how to configure SSH for remote access to the Live CD even when running behind a NAT device. The combination of customization and secure remote access will make this process valuable to incident handlers working in enterprise environments with limited remote IT support. Bert Hayes, [email protected] How to Create a Custom Live CD for Remote Incident Handling 2 Table of Contents Abstract ...........................................................................................................................................1 1. Introduction ............................................................................................................................5 2. Making Your Own Customized Debian GNU/Linux Based System........................................7 2.1. The Development Environment ......................................................................................7 2.2. Making Your Dream Incident Handling System...............................................................9 2.3. Hardening the Base Install.............................................................................................11 2.3.1. Managing Root Access with Sudo..........................................................................11 2.4. Randomizing the Handler Password at Boot Time ........................................................12 -
Deep Compression
COVER STORY Cloop DEEPBlock device compression COMPRESSION with the cloop module KYRO, photocase.com KYRO, The cloop module lets you manage compression at the block device 512 bytes), and they are usually used for random access storage like ramdisks, level. Read on to learn how Knoppix and other Live CDs fit all that CD-ROMs, floppy disks, hard disks, and hard disk partitions. software on a single disc. BY KLAUS KNOPPER Filesystems are a logical representa- tion of ordered data that is often present loop is a kernel block device block-based devices. If you look into the on a block device. A filesystem turns raw module used in Live CDs such output of ls -l /dev, you will easily recog- data into the familiar directory/file view. Cas Knoppix. The cloop module nize these devices by the prefix – c for The mount command is the bridge be- allows the system to read compressed character-based and b for block-based tween a block device partition and its data, usually from a file, thus creating devices – at the beginning of the output projection into a mount point directory. compressed virtual disks. Using cloop, line (see Listing 1). a Linux installation of about 2GB fits on Character-based devices, such as tape Cloop: A Compressed a single 700MB CD-R disc. In this article, drives, mice, and gamepads, provide se- Loopback Block Device I look at how cloop works and provide quential, character-by-character access One block device included in any Linux some insight into general kernel struc- to data. -
DMFS - a Data Migration File System for Netbsd
DMFS - A Data Migration File System for NetBSD William Studenmund Veridian MRJ Technology Solutions NASAAmes Research Center" Abstract It was designed to support the mass storage systems de- ployed here at NAS under the NAStore 2 system. That system supported a total of twenty StorageTek NearLine ! have recently developed DMFS, a Data Migration File tape silos at two locations, each with up to four tape System, for NetBSD[I]. This file system provides ker- drives each. Each silo contained upwards of 5000 tapes, nel support for the data migration system being devel- and had robotic pass-throughs to adjoining silos. oped by my research group at NASA/Ames. The file system utilizes an underlying file store to provide the file The volman system is designed using a client-server backing, and coordinates user and system access to the model, and consists of three main components: the vol- files. It stores its internal metadata in a flat file, which man master, possibly multiple volman servers, and vol- resides on a separate file system. This paper will first man clients. The volman servers connect to each tape describe our data migration system to provide a context silo, mount and unmount tapes at the direction of the for DMFS, then it will describe DMFS. It also will de- volman master, and provide tape services to clients. The scribe the changes to NetBSD needed to make DMFS volman master maintains a database of known tapes and work. Then it will give an overview of the file archival locations, and directs the tape servers to move and mount and restoration procedures, and describe how some typi- tapes to service client requests. -
Unionfs: User- and Community-Oriented Development of a Unification File System
Unionfs: User- and Community-Oriented Development of a Unification File System David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok Stony Brook University {dquigley,jsipek,cwright,ezk}@cs.sunysb.edu Abstract If a file exists in multiple branches, the user sees only the copy in the higher-priority branch. Unionfs allows some branches to be read-only, Unionfs is a stackable file system that virtually but as long as the highest-priority branch is merges a set of directories (called branches) read-write, Unionfs uses copy-on-write seman- into a single logical view. Each branch is as- tics to provide an illusion that all branches are signed a priority and may be either read-only writable. This feature allows Live-CD develop- or read-write. When the highest priority branch ers to give their users a writable system based is writable, Unionfs provides copy-on-write se- on read-only media. mantics for read-only branches. These copy- on-write semantics have lead to widespread There are many uses for namespace unifica- use of Unionfs by LiveCD projects including tion. The two most common uses are Live- Knoppix and SLAX. In this paper we describe CDs and diskless/NFS-root clients. On Live- our experiences distributing and maintaining CDs, by definition, the data is stored on a read- an out-of-kernel module since November 2004. only medium. However, it is very convenient As of March 2006 Unionfs has been down- for users to be able to modify the data. Uni- loaded by over 6,700 unique users and is used fying the read-only CD with a writable RAM by over two dozen other projects. -
We Get Letters Sept/Oct 2018
SEE TEXT ONLY WeGetletters by Michael W Lucas letters@ freebsdjournal.org tmpfs, or be careful to monitor tmpfs space use. Hey, FJ Letters Dude, Not that you’ll configure your monitoring system Which filesystem should I use? to watch tmpfs, because it’s temporary. And no matter what, one day you’ll forget —FreeBSD Newbie that you used memory space as a filesystem. You’ll stash something vital in that temporary space, then reboot. And get really annoyed Dear FreeBSD Newbie, when that vital data vanishes into the ether. First off, welcome to FreeBSD. The wider com- Some other filesystems aren’t actively terrible. munity is glad to help you. The device filesystem devfs(5) provides device Second, please let me know who told you to nodes. Filesystems that can’t store user data are start off by writing me. I need to properly… the best filesystems. But then some clever sysad- “thank” them. min decides to hack on /etc/devfs.rules to Filesystems? Sure, let’s talk filesystems. change the standard device nodes for their spe- Discussing which filesystem is the worst is like cial application, or /etc/devd.conf to create or debating the merits of two-handed swords as reconfigure device nodes, and the whole system compared to lumberjack-grade chainsaws and goes down the tubes. industrial tulip presses. While every one of them Speaking of clever sysadmins, now and then has perfectly legitimate uses, in the hands of the people decide that they want to optimize disk novice they’re far more likely to maim everyone space or cut down how many copies of a file involved. -
Plan 9 from Bell Labs
Plan 9 from Bell Labs “UNIX++ Anyone?” Anant Narayanan Malaviya National Institute of Technology FOSS.IN 2007 What is it? Advanced technology transferred via mind-control from aliens in outer space Humans are not expected to understand it (Due apologies to lisperati.com) Yeah Right • More realistically, a distributed operating system • Designed by the creators of C, UNIX, AWK, UTF-8, TROFF etc. etc. • Widely acknowledged as UNIX’s true successor • Distributed under terms of the Lucent Public License, which appears on the OSI’s list of approved licenses, also considered free software by the FSF What For? “Not only is UNIX dead, it’s starting to smell really bad.” -- Rob Pike (circa 1991) • UNIX was a fantastic idea... • ...in it’s time - 1970’s • Designed primarily as a “time-sharing” system, before the PC era A closer look at Unix TODAY It Works! But that doesn’t mean we don’t develop superior alternates GNU/Linux • GNU’s not UNIX, but it is! • Linux was inspired by Minix, which was in turn inspired by UNIX • GNU/Linux (mostly) conforms to ANSI and POSIX requirements • GNU/Linux, on the desktop, is playing “catch-up” with Windows or Mac OS X, offering little in terms of technological innovation Ok, and... • Most of the “modern ideas” we use today were “bolted” on an ancient underlying system • Don’t believe me? A “modern” UNIX Terminal Where did it go wrong? • Early UNIX, “everything is a file” • Brilliant! • Only until people started adding “features” to the system... Why you shouldn’t be working with GNU/Linux • The Socket API • POSIX • X11 • The Bindings “rat-race” • 300 system calls and counting.. -
QEMU Version 4.2.0 User Documentation I
QEMU version 4.2.0 User Documentation i Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1 Features :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 QEMU PC System emulator ::::::::::::::::::: 2 2.1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.2 Quick Start::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.3 Invocation :::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3.1 Standard options :::::::::::::::::::::::::::::::::::::::::: 3 2.3.2 Block device options :::::::::::::::::::::::::::::::::::::: 12 2.3.3 USB options:::::::::::::::::::::::::::::::::::::::::::::: 23 2.3.4 Display options ::::::::::::::::::::::::::::::::::::::::::: 23 2.3.5 i386 target only::::::::::::::::::::::::::::::::::::::::::: 30 2.3.6 Network options :::::::::::::::::::::::::::::::::::::::::: 31 2.3.7 Character device options:::::::::::::::::::::::::::::::::: 38 2.3.8 Bluetooth(R) options ::::::::::::::::::::::::::::::::::::: 42 2.3.9 TPM device options :::::::::::::::::::::::::::::::::::::: 43 2.3.10 Linux/Multiboot boot specific ::::::::::::::::::::::::::: 44 2.3.11 Debug/Expert options ::::::::::::::::::::::::::::::::::: 45 2.3.12 Generic object creation :::::::::::::::::::::::::::::::::: 54 2.3.13 Device URL Syntax ::::::::::::::::::::::::::::::::::::: 66 2.4 Keys in the graphical frontends :::::::::::::::::::::::::::::::: 69 2.5 Keys in the character backend multiplexer ::::::::::::::::::::: 69 2.6 QEMU Monitor ::::::::::::::::::::::::::::::::::::::::::::::: 70 2.6.1 Commands ::::::::::::::::::::::::::::::::::::::::::::::: -
LSF ’07: 2007 Linux Storage & Filesystem Workshop Namically Adjusted According to the Current Popularity of Its Hot Zone
June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 84 PRO: A Popularity-Based Multi-Threaded Reconstruction overhead of PRO is O(n), although if a priority queue is Optimization for RAID-Structured Storage Systems used in the PRO algorithm the computation overhead can Lei Tian and Dan Feng, Huazhong University of Science and be reduced to O(log n). The entire PRO implementation in Technology; Hong Jiang, University of Nebraska—Lincoln; Ke the RAIDFrame software only added 686 lines of code. Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua- Work on PRO is ongoing. Future work includes optimiz - zhong University of Science and Technology and Wuhan ing the time slice, scheduling strategies, and hot zone National Laboratory for Optoelectronics; Zhenlei Song, length. Currently, PRO is being ported into the Linux soft - Huazhong University of Science and Technology ware RAID. Finally, the authors plan on further investigat - ing use of access patterns to help predict user accesses and Hong Jiang began his talk by discussing the importance of of filesystem semantic knowledge to explore accurate re - data recovery. Disk failures have become more common in construction. RAID-structured storage systems. The improvement in disk capacity has far outpaced improvements in disk band - The first questioner asked about the average rate of recov - width, lengthening the overall RAID recovery time. Also, ery for PRO. Hong answered that the average reconstruc - disk drive reliability has improved slowly, resulting in a tion time is several hundred seconds in the experimental very high overall failure rate in a large-scale RAID storage setup. -
Modular Data Storage with Anvil
Modular Data Storage with Anvil Mike Mammarella Shant Hovsepian Eddie Kohler UCLA UCLA UCLA/Meraki [email protected] [email protected] [email protected] http://www.read.cs.ucla.edu/anvil/ ABSTRACT age strategies and behaviors. We intend Anvil configura- Databases have achieved orders-of-magnitude performance tions to serve as single-machine back-end storage layers for improvements by changing the layout of stored data – for databases and other structured data management systems. instance, by arranging data in columns or compressing it be- The basic Anvil abstraction is the dTable, an abstract key- fore storage. These improvements have been implemented value store. Some dTables communicate directly with sta- in monolithic new engines, however, making it difficult to ble storage, while others layer above storage dTables, trans- experiment with feature combinations or extensions. We forming their contents. dTables can represent row stores present Anvil, a modular and extensible toolkit for build- and column stores, but their fine-grained modularity of- ing database back ends. Anvil’s storage modules, called dTa- fers database designers more possibilities. For example, a bles, have much finer granularity than prior work. For ex- typical Anvil configuration splits a single “table” into sev- ample, some dTables specialize in writing data, while oth- eral distinct dTables, including a log to absorb writes and ers provide optimized read-only formats. This specialization read-optimized structures to satisfy uncached queries. This makes both kinds of dTable simple to write and understand. split introduces opportunities for clean extensibility – for Unifying dTables implement more comprehensive function- example, we present a Bloom filter dTable that can slot ality by layering over other dTables – for instance, building a above read-optimized stores and improve the performance read/write store from read-only tables and a writable journal, of nonexistent key lookup. -
(Brief) 2. an Extensible Compiler for Systems Programming
Show and Tell 1. Plan 9 Things (brief) 2. An Extensible Compiler for Systems Programming Russ Cox rsc@plan9 1127 Show and Tell April 19, 2005 who am i ................................................................................................................. ‘‘Neighborhood kid’’ 1995 summer hacking Excel (jlb) 1995-1997 cable modems (nls, tom) 1997-1999 annoying Plan 9 user 1999 summer doing Plan 9 graphics (rob, jmk) 1999-present assorted Plan 9 hacking Plan 9 Things ........................................................................................................ VBE ߝ use BIOS to set up VGA modes ߝ requires switching into real mode and back Venti ߝ reworked significantly ߝ aggressive caching, prefetching, batching, delayed writes ߝ Bloom filter to avoid index misses Plan 9 from User Space (plan9port) ߝ port bulk of Plan 9 software to Unix systems ߝ Linux, FreeBSD, NetBSD, SunOS, Mac OS X .................................................................................................................................... An Extensible Compiler for Systems Programming Russ Cox Frans Kaashoek Eddie Kohler [email protected] Outline ..................................................................................................................... Why bother? What could it do? How could it work? Ground rules: ߝ interrupt with questions ߝ work in progress ߝ show and tell, not a job talk Man vs. Machine ߝ Linguistic Tensions ................................................... The most important readers of a program are people.