Unionfs: User- and Community-Oriented Development of a Unification File System

Total Page:16

File Type:pdf, Size:1020Kb

Unionfs: User- and Community-Oriented Development of a Unification File System Unionfs: User- and Community-Oriented Development of a Unification File System David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok Stony Brook University {dquigley,jsipek,cwright,ezk}@cs.sunysb.edu Abstract If a file exists in multiple branches, the user sees only the copy in the higher-priority branch. Unionfs allows some branches to be read-only, Unionfs is a stackable file system that virtually but as long as the highest-priority branch is merges a set of directories (called branches) read-write, Unionfs uses copy-on-write seman- into a single logical view. Each branch is as- tics to provide an illusion that all branches are signed a priority and may be either read-only writable. This feature allows Live-CD develop- or read-write. When the highest priority branch ers to give their users a writable system based is writable, Unionfs provides copy-on-write se- on read-only media. mantics for read-only branches. These copy- on-write semantics have lead to widespread There are many uses for namespace unifica- use of Unionfs by LiveCD projects including tion. The two most common uses are Live- Knoppix and SLAX. In this paper we describe CDs and diskless/NFS-root clients. On Live- our experiences distributing and maintaining CDs, by definition, the data is stored on a read- an out-of-kernel module since November 2004. only medium. However, it is very convenient As of March 2006 Unionfs has been down- for users to be able to modify the data. Uni- loaded by over 6,700 unique users and is used fying the read-only CD with a writable RAM by over two dozen other projects. The total disk gives the user the illusion of being able to number of Unionfs users, by extension, is in the modify the CD. Maintaining an identical sys- tens of thousands. tem configuration across multiple diskless sys- tems is another application of Unionfs. One simply needs to build a read-only system im- 1 Introduction age, and create a union for each diskless node. Unionfs is based on the FiST stackable file sys- Unionfs is a stackable file system that allows tem templates, which provide support for lay- users to specify a series of directories (also ering over a single directory [12]. As shown known as branches) which are presented to in Figure 1(a), the kernel’s VFS is responsi- users as one virtual directory even though the ble for dispatching file-system–related system branches can come from different file systems. calls to the appropriate file system. To the VFS, This is commonly referred to as namespace a stackable file system appears as if it were a unification. Unionfs uses a simple priority sys- standard file system, but instead of storing or tem which gives each branch a unique priority. retrieving data, a stackable file system passes 350 • Unionfs: User- and Community-Oriented Development of a Unification File System User Process User Process rename() User rename() User vfs_rename() vfs_rename() Virtual File System Virtual File System fist_rename() unionfs_rename() Kernel Kernel FiST Unionfs nfs_rename() RW RO tmpfs_rename() nfs_rename() NFS tmpfs ... NFS (a) Wrapfs layers over a single directory. (b) Unionfs layers over multiple directories. Figure 1: User processes issue system calls, which the kernel’s virtual file system (VFS) directs to stackable file systems. Stackable file systems in turn pass the calls down to lower-level file systems (e.g., tmpfs or NFS). calls down to lower-level file systems that are as a research project [10, 11]. We released responsible for data storage and retrieval. In Unionfs as a standalone kernel module because this scenario, NFS is used as the lower-level that was the most expedient way for users to file system, but any file system can be used begin using it and it required less initial ef- to store the data (e.g., Ext2, Ext3, Reiserfs, fort on our part. Unionfs was quickly adopted SQUASHFS, isofs, and tmpfs). To the lower- by several LiveCDs such as SLAX [7] (De- level file systems, a stackable file system ap- cember 2004) and Knoppix [5] (March 2005). pears as if it were the VFS. This makes stack- As of March 2006, Unionfs has been down- able file system development difficult, because loaded by over 6,700 users from 81 countries the file system must adhere to the conventions and is distributed as part of other projects. Our both of file systems (for processing VFS calls) mailing list currently has 336 subscribers with and of the VFS (for making VFS calls). 53 of them subscribed to our CVS update list. Unionfs is an integral part of several LiveCDs, As shown in Figure 1(b), Unionfs extends the so the actual number of Unionfs users is much FiST templates to layer over multiple direc- larger. tories, unify directory contents, and perform copy-on-write. In this example, Unionfs is Maintaining Unionfs outside of the kernel has layered over two branches: (1) a read-write both benefits and complications. By maintain- tmpfs file system and (2) a read-only NFS file ing the tree outside of the kernel, our user base system. The contents of these file systems are is expanded: users can still use their vendor’s virtually merged, and if operations on the NFS kernel, and we are able to support several ker- file system return the read-only file system er- nel versions. We were also able to release ror code (EROFS) then Unionfs transparently Unionfs more frequently than the kernel. How- copies the files to the tmpfs branch. ever, this makes our code more complex since we must deal with changing interfaces between We originally released Unionfs in November kernel versions. It also raises questions about 2004, after roughly 18 months of development the point at which support for a particular older 2006 Linux Symposium, Volume Two • 351 kernel version should be dropped. At this point, 2 Use Cases Unionfs has become established enough that we are moving towards a release that is ready for mainline kernel submission. We have identified three primary use cases for Unionfs. All of these common use cases lever- age Unionfs’s copy-on-write semantics. The first and most prevalent use of Unionfs is in Unionfs has complex allocation schemes (par- LiveCDs. The second is using Unionfs to pro- ticularly for dentry and inode objects), and vide a common base for several NFS-mounted makes more use of kmalloc than other file machines. The third is to use Unionfs for snap- systems. One hurdle we had to overcome shotting. was lack of useful memory-allocation debug- ging support. The memory-allocation debug- ging code in recent -mm kernels does not pro- LiveCDs. LiveCDs allow users to boot Linux vide sufficient debugging information. In our without modifying any data on a hard disk. approach, we log kmalloc and dentry alloca- This has several advantages: tions, and then post-process the log to locate memory leaks and other errors. • Users can try Linux without committing to it [5, 7]. In our efforts to move toward kernel inclusion • Special-purpose open-source software can we have come across many aspects that conflict be distributed to non-technical users (e.g., with maintaining an out-of-kernel module. One for music composition [4]). of the main issues is the ability to separate re- • System administrators can rescue ma- search code from practical code. Features such chines more easily [2]. as persistent inodes and atomically performing certain operations increase code complexity, • Many similar machines can be set up with- conflicting with the mantra “less code is better out installing software (e.g., in a cluster code.” We also had to change the way we sepa- environment [9], or at events that require rate file system components to provide simpler certain software). and more easily maintainable code. In addition to this, we also have to keep up with changes in kernel interfaces such as the change of locking The simplest use of Unionfs for LiveCDs uni- primitives introduced in Linux 2.6.16. fies a standard read-only ISO9660 file system with a higher-priority read-write tmpfs file system. Current versions of Knoppix [5] use such a configuration, which allows users to in- The rest of this paper is organized as follows. stall and reconfigure programs. In Section 2 we describe Unionfs use cases. In Section 3 we describe the challenges of main- Knoppix begins its boot sequence by loading taining an out-of-tree module. In Section 4 we an initial RAM disk (initrd) image of an describe some limitations of Unionfs. In Sec- Ext2 file system and then executing a shell tion 5 we present a brief performance evalua- script called /linuxrc. The linuxrc script tion of Unionfs. Finally, we conclude in Sec- first mounts the /proc and /sys file systems. tion 6. Next, Knoppix loads various device drivers 352 • Unionfs: User- and Community-Oriented Development of a Unification File System (e.g., SCSI, IDE, USB, FireWire) and mounts to the SQUASHFS images, the highest-priority a compressed ISO9660 image on /KNOPPIX. branch is a read-write tmpfs which provides After the Knoppix image is mounted, the the illusion that the CD is read-write. Unionfs module is loaded. Next a tmpfs file system is mounted on /ramdisk. Once SLAX uses the pivot_root system call so Unionfs is mounted, this RAM disk becomes that the root file system is indeed Unionfs, the destination for all of the changes to the CD- whereas Knoppix creates symbolic links to ROM. Next, the directory /UNIONFS is cre- provide the illusion of a Unionfs-rooted CD.
Recommended publications
  • Administració De Sistemes GNU Linux Mòdul4 Administració
    Administració local Josep Jorba Esteve PID_00238577 GNUFDL • PID_00238577 Administració local Es garanteix el permís per a copiar, distribuir i modificar aquest document segons els termes de la GNU Free Documentation License, Version 1.3 o qualsevol altra de posterior publicada per la Free Software Foundation, sense seccions invariants ni textos de la oberta anterior o posterior. Podeu consultar els termes de la llicència a http://www.gnu.org/licenses/fdl-1.3.html. GNUFDL • PID_00238577 Administració local Índex Introducció.................................................................................................. 5 1. Eines bàsiques per a l'administrador........................................... 7 1.1. Eines gràfiques i línies de comandes .......................................... 8 1.2. Documents d'estàndards ............................................................. 10 1.3. Documentació del sistema en línia ............................................ 13 1.4. Eines de gestió de paquets .......................................................... 15 1.4.1. Paquets TGZ ................................................................... 16 1.4.2. Fedora/Red Hat: paquets RPM ....................................... 19 1.4.3. Debian: paquets DEB ..................................................... 24 1.4.4. Nous formats d'empaquetat: Snap i Flatpak .................. 28 1.5. Eines genèriques d'administració ................................................ 36 1.6. Altres eines .................................................................................
    [Show full text]
  • Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4
    SUSE Linux Enterprise Server 12 SP4 Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4 Provides information about how to manage storage devices on a SUSE Linux Enterprise Server. Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its aliates. Asterisks (*) denote third-party trademarks. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xii 1 Available Documentation xii 2 Giving Feedback xiv 3 Documentation Conventions xiv 4 Product Life Cycle and Support xvi Support Statement for SUSE Linux Enterprise Server xvii • Technology Previews xviii I FILE SYSTEMS AND MOUNTING 1 1 Overview
    [Show full text]
  • CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N
    CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N. Gutierrez Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086 DECEPTIVE MEMORY SYSTEMS ADissertation Submitted to the Faculty of Purdue University by Christopher N. Gutierrez In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Eugene H. Spa↵ord, Co-Chair Department of Computer Science Dr. Saurabh Bagchi, Co-Chair Department of Computer Science Dr. Dongyan Xu Department of Computer Science Dr. Mathias Payer Department of Computer Science Approved by: Dr. Voicu Popescu by Dr. William J. Gorman Head of the Graduate Program iii This work is dedicated to my wife, Gina. Thank you for all of your love and support. The moon awaits us. iv ACKNOWLEDGMENTS Iwould liketothank ProfessorsEugeneSpa↵ord and SaurabhBagchi for their guidance, support, and advice throughout my time at Purdue. Both have been instru­ mental in my development as a computer scientist, and I am forever grateful. I would also like to thank the Center for Education and Research in Information Assurance and Security (CERIAS) for fostering a multidisciplinary security culture in which I had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas­ tongia for their technical support and Thomas Yurek for his programming assistance for the experimental evaluation. I am grateful for the valuable feedback provided by the members of my thesis committee, Professor Dongyen Xu, and Professor Math­ ias Payer.
    [Show full text]
  • HTTP-FUSE Xenoppix
    HTTP-FUSE Xenoppix Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima† Kenji Kitagawa†† Shuichi Tashiro††† National Institute of Advanced Industrial Science and Technology† Alpha Systems Inc.†† Information-Technology Promotion Agency, Japan††† {k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp [email protected], [email protected] Abstract a CD-ROM. Furthermore it requires remaking the entire CD-ROM when a bit of data is up- dated. The other solution is a Virtual Machine We developed “HTTP-FUSE Xenoppix” which which enables us to install many OSes and ap- boots Linux, Plan9, and NetBSD on Virtual plications easily. However, that requires in- Machine Monitor “Xen” with a small bootable stalling virtual machine software. (6.5MB) CD-ROM. The bootable CD-ROM in- cludes boot loader, kernel, and miniroot only We have developed “Xenoppix” [1], which and most part of files are obtained via Internet is a combination of CD/DVD bootable Linux with network loopback device HTTP-FUSE “KNOPPIX” [2] and Virtual Machine Monitor CLOOP. It is made from cloop (Compressed “Xen” [3, 4]. Xenoppix boots Linux (KNOP- Loopback block device) and FUSE (Filesys- PIX) as Host OS and NetBSD or Plan9 as Guest tem USErspace). HTTP-FUSE CLOOP can re- OS with a bootable DVD only. KNOPPIX construct a block device from many small block is advanced in automatic device detection and files of HTTP servers. In this paper we describe driver integration. It prepares the Xen environ- the detail of the implementation and its perfor- ment and Guest OSes don’t need to worry about mance. lack of device drivers.
    [Show full text]
  • Open Source Licensing Information for Cisco IP Phone 8800 Series
    Open Source Used In Cisco IP Phone 8800 Series 12.1(1) Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-163803748 Open Source Used In Cisco IP Phone 8800 Series 12.1(1) 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-163803748 Contents 1.1 bluez 4.101 :MxC-1.1C R4.0 1.1.1 Available under license 1.2 BOOST C++ Library 1.63.0 1.2.1 Available under license 1.3 busybox 1.21.0 1.3.1 Available under license 1.4 Busybox 1.23.1 1.4.1 Available under license 1.5 cjose 0.4.1 1.5.1 Available under license 1.6 cppformat 2.0.0 1.6.1 Available under license 1.7 curl 7.26.0 1.7.1 Available under license 1.8 dbus 1.4.1 :MxC-1.1C R4.0 1.8.1 Available under license 1.9 DirectFB library and utilities 1.4.5 1.9.1 Available under license 1.10 dnsmasq 2.46 1.10.1 Available under license 1.11 flite 2.0.0 1.11.1 Available under license 1.12 glibc 2.13 1.12.1 Available under license 1.13 hostapd 2.0 :MxC-1.1C R4.0 1.13.1 Available under license Open Source Used
    [Show full text]
  • De-Anonymizing Live Cds Through Physical Memory Analysis
    De-Anonymizing Live CDs through Physical Memory Analysis Andrew Case [email protected] Digital Forensics Solutions Abstract Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk image. Since the filesystem is intact on these images, a number of forensics techniques are available for analysis such as file and metadata examination, timelining, deleted file recovery, indexing, and searching. Live CDs present a serious problem for this investigative model, however, since the OS and applications execute in a RAM-only environment and do not save data on non-volatile storage devices such as the local disk. In order to solve this problem, we present a number of techniques that support complete recovery of a live CD’s in-memory filesystem and partial recovery of its deleted contents. We also present memory analysis of the popular Tor application, since it is used by a number of live CDs in an attempt to keep network communications encrypted and anonymous. 1 Introduction Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk image. Under normal circumstances, evidence is obtained by first creating an exact, bit-for-bit copy of the target disk, followed by hashing of both the target disk and the new copy. If these hashes match then it is known that an exact copy has been made, and the hash is recorded to later prove that evidence was not modified during the investigation. Besides satisfying legal requirements, obtaining a bit-for-bit copy of data provides investigators with a wealth of information to examine and makes available a number of forensics techniques.
    [Show full text]
  • USB Composite Gadget Using CONFIG-FS on Dra7xx Devices
    Application Report SPRACB5–September 2017 USB Composite Gadget Using CONFIG-FS on DRA7xx Devices RaviB ABSTRACT This application note explains how to create a USB composite gadget, network control model (NCM) and abstract control model (ACM) from the user space using Linux® CONFIG-FS on the DRA7xx platform. Contents 1 Introduction ................................................................................................................... 2 2 USB Composite Gadget Using CONFIG-FS ............................................................................. 3 3 Creating Composite Gadget From User Space.......................................................................... 4 4 References ................................................................................................................... 8 List of Figures 1 Block Diagram of USB Composite Gadget............................................................................... 3 2 Selection of CONFIGFS Through menuconfig........................................................................... 4 3 Select USB Configuration Through menuconfig......................................................................... 4 4 Composite Gadget Configuration Items as Files and Directories ..................................................... 5 5 VID, PID, and Manufacturer String Configuration ....................................................................... 6 6 Kernel Logs Show Enumeration of USB Composite Gadget by Host ................................................ 6 7 Ping
    [Show full text]
  • CIS 191 Linux Lab Exercise
    CIS 191 Linux Lab Exercise Lab 9: Backup and Restore Fall 2008 Lab 9: Backup and Restore The purpose of this lab is to explore the different types of backups and methods of restoring them. We will look at three utilities often used for backups and learn the advantages and disadvantages of each. Supplies • VMWare Server 1.05 or higher • Benji VM Preconfiguration • Labs 6 and Labs 7 completed on a pristine Benji VM [root@benji /]# fdisk -l Disk /dev/sda: 5368 MB, 5368709120 bytes 255 heads, 63 sectors/track, 652 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 382 3068383+ 83 Linux /dev/sda2 383 447 522112+ 82 Linux swap / Solaris /dev/sda3 448 511 514080 83 Linux /dev/sda4 512 652 1132582+ 5 Extended /dev/sda5 512 549 305203+ 83 Linux /dev/sda6 550 556 56196 83 Linux /dev/sda7 557 581 200781 83 Linux [root@benji /]# [root@benji /]# mount /dev/sda1 on / type ext3 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) tmpfs on /dev/shm type tmpfs (rw) /dev/sda5 on /opt type ext3 (rw) /dev/sda3 on /var type ext3 (rw) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) /dev/sda7 on /home type ext3 (rw,usrquota) [root@benji /]# cat /etc/fstab LABEL=/1 / ext3 defaults 1 1 devpts /dev/pts devpts gid=5,mode=620 0 0 tmpfs /dev/shm tmpfs defaults 0 0 LABEL=/opt /opt ext3 defaults 1 2 proc /proc proc defaults 0 0 sysfs /sys sysfs defaults 0 0 LABEL=/var /var ext3 defaults 1 2 LABEL=SWAP-sda2 swap swap defaults 0 0 LABEL=/home /home ext3 usrquota,defaults 1 2 [root@benji /]# Forum If you get stuck on one of the steps below don’t beat your head against the wall.
    [Show full text]
  • Hardware-Driven Evolution in Storage Software by Zev Weiss A
    Hardware-Driven Evolution in Storage Software by Zev Weiss A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2018 Date of final oral examination: June 8, 2018 ii The dissertation is approved by the following members of the Final Oral Committee: Andrea C. Arpaci-Dusseau, Professor, Computer Sciences Remzi H. Arpaci-Dusseau, Professor, Computer Sciences Michael M. Swift, Professor, Computer Sciences Karthikeyan Sankaralingam, Professor, Computer Sciences Johannes Wallmann, Associate Professor, Mead Witter School of Music i © Copyright by Zev Weiss 2018 All Rights Reserved ii To my parents, for their endless support, and my cousin Charlie, one of the kindest people I’ve ever known. iii Acknowledgments I have taken what might be politely called a “scenic route” of sorts through grad school. While Ph.D. students more focused on a rapid graduation turnaround time might find this regrettable, I am glad to have done so, in part because it has afforded me the opportunities to meet and work with so many excellent people along the way. I owe debts of gratitude to a large cast of characters: To my advisors, Andrea and Remzi Arpaci-Dusseau. It is one of the most common pieces of wisdom imparted on incoming grad students that one’s relationship with one’s advisor (or advisors) is perhaps the single most important factor in whether these years of your life will be pleasant or unpleasant, and I feel exceptionally fortunate to have ended up iv with the advisors that I’ve had.
    [Show full text]
  • Connecting the Storage System to the Solaris Host
    Configuration Guide for Solaris™ Host Attachment Hitachi Virtual Storage Platform Hitachi Universal Storage Platform V/VM FASTFIND LINKS Document Organization Product Version Getting Help Contents MK-96RD632-05 Copyright © 2010 Hitachi, Ltd., all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose without the express written permission of Hitachi, Ltd. (hereinafter referred to as “Hitachi”) and Hitachi Data Systems Corporation (hereinafter referred to as “Hitachi Data Systems”). Hitachi Data Systems reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. This document contains the most current information available at the time of publication. When new and/or revised information becomes available, this entire document will be updated and distributed to all registered users. All of the features described in this document may not be currently available. Refer to the most recent product announcement or contact your local Hitachi Data Systems sales office for information about feature and product availability. Notice: Hitachi Data Systems products and services can be ordered only under the terms and conditions of the applicable Hitachi Data Systems agreement(s). The use of Hitachi Data Systems products is governed by the terms of your agreement(s) with Hitachi Data Systems. Hitachi is a registered trademark of Hitachi, Ltd. in the United States and other countries. Hitachi Data Systems is a registered trademark and service mark of Hitachi, Ltd.
    [Show full text]
  • Elinos Product Overview
    SYSGO Product Overview ELinOS 7 Industrial Grade Linux ELinOS is a SYSGO Linux distribution to help developers save time and effort by focusing on their application. Our Industrial Grade Linux with user-friendly IDE goes along with the best selection of software packages to meet our cog linux Qt LOCK customers needs, and with the comfort of world-class technical support. ELinOS now includes Docker support Feature LTS Qt Open SSH Configurator Kernel embedded Open VPN in order to isolate applications running on the same system. laptop Q Bug Shield-Virus Docker Eclipse-based QEMU-based Application Integrated Docker IDE HW Emulators Debugging Firewall Support ELINOS FEATURES MANAGING EMBEDDED LINUX VERSATILITY • Industrial Grade Creating an Embedded Linux based system is like solving a puzzle and putting • Eclipse-based IDE for embedded the right pieces together. This requires a deep knowledge of Linux’s versatility Systems (CODEO) and takes time for the selection of components, development of Board Support • Multiple Linux kernel versions Packages and drivers, and testing of the whole system – not only for newcomers. incl. Kernel 4.19 LTS with real-time enhancements With ELinOS, SYSGO offers an ‘out-of-the-box’ experience which allows to focus • Quick and easy target on the development of competitive applications itself. ELinOS incorporates the system configuration appropriate tools, such as a feature configurator to help you build the system and • Hardware Emulation (QEMU) boost your project success, including a graphical configuration front-end with a • Extensive file system support built-in integrity validation. • Application debugging • Target analysis APPLICATION & CONFIGURATION ENVIRONMENT • Runs out-of-the-box on PikeOS • Validated and tested for In addition to standard tools, remote debugging, target system monitoring and PowerPC, x86, ARM timing behaviour analyses are essential for application development.
    [Show full text]
  • Oracle® Linux 7 Managing File Systems
    Oracle® Linux 7 Managing File Systems F32760-07 August 2021 Oracle Legal Notices Copyright © 2020, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]