Elinos Product Overview

Total Page:16

File Type:pdf, Size:1020Kb

Elinos Product Overview SYSGO Product Overview ELinOS 7 Industrial Grade Linux ELinOS is a SYSGO Linux distribution to help developers save time and effort by focusing on their application. Our Industrial Grade Linux with user-friendly IDE goes along with the best selection of software packages to meet our cog linux Qt LOCK customers needs, and with the comfort of world-class technical support. ELinOS now includes Docker support Feature LTS Qt Open SSH Configurator Kernel embedded Open VPN in order to isolate applications running on the same system. laptop Q Bug Shield-Virus Docker Eclipse-based QEMU-based Application Integrated Docker IDE HW Emulators Debugging Firewall Support ELINOS FEATURES MANAGING EMBEDDED LINUX VERSATILITY • Industrial Grade Creating an Embedded Linux based system is like solving a puzzle and putting • Eclipse-based IDE for embedded the right pieces together. This requires a deep knowledge of Linux’s versatility Systems (CODEO) and takes time for the selection of components, development of Board Support • Multiple Linux kernel versions Packages and drivers, and testing of the whole system – not only for newcomers. incl. Kernel 4.19 LTS with real-time enhancements With ELinOS, SYSGO offers an ‘out-of-the-box’ experience which allows to focus • Quick and easy target on the development of competitive applications itself. ELinOS incorporates the system configuration appropriate tools, such as a feature configurator to help you build the system and • Hardware Emulation (QEMU) boost your project success, including a graphical configuration front-end with a • Extensive file system support built-in integrity validation. • Application debugging • Target analysis APPLICATION & CONFIGURATION ENVIRONMENT • Runs out-of-the-box on PikeOS • Validated and tested for In addition to standard tools, remote debugging, target system monitoring and PowerPC, x86, ARM timing behaviour analyses are essential for application development. • Support for 32- and 64-bit processors CODEO is a complete Eclipse-based development environment. By means of the • BSPs for major embedded boards feature configurator, the developer is enabled to define the system configuration and chip vendors included on a high level. The generation of the root file system and the Linux kernel • Cost-effective licensing model configuration follow changes of the feature configuration automatically, by just • One-year support included considering components that are actually required. This mechanism lessens memory footprint and results in a significantly reduced number of possible attack System Requirements vectors compared to a standard Linux system. • 64-bit Linux host distributions • Tested on Debian, Fedora, Ubuntu, Learn more: www.sysgo.com/codeo OpenSUSE, Windows 10 (64-bit) • 4 GB free disk space • 2 GB RAM • Java runtime environment 11 www.sysgo.com ELinOS - Industrial Grade Linux VERSATILE EMBEDDED LINUX Kernel Security Features ELinOS 7 includes Kernel 4.19 with optimizations for Secure the target system against external or internal threats embedded usage. Other kernel versions are available for using provided Security mechanisms and tools. selected BSPs. The Linux kernel is automatically tailored • Integrated rule-based firewall • Secure remote shell access based on the project’s configuration and compiled within • VPN the CODEO IDE. The development toolchain is based on gcc-8.3, glibc 2.28 is provided as C library. Vendor kernels Industrial Automation from a Yocto BSP can be easily imported into an ELinOS ELinOS Industrial Grade Linux explicitly supports the needs system. of Industrial Automation customers. • CAN • VME • IPv6 • USB3.0 • WLAN Supported Hardware • Others (EtherCAT, ... upon request) Support for many CPU architectures, single- and multi-core platforms. ELinOS is tested and validated for: Pre-Compiled Target Binaries • ARM 32- and 64-bit • Power PC • PowerPC 64 To accelerate the embedded Linux configuration and buil- • x86 32- and 64-bit ding process, ELinOS industrial grade Linux includes more than 250 pre-compiled applications and libraries: Supported Boards • BusyBox • QT 5.11 • GTK+3.24 • XOrg-Server-1.19 • OpenSSH Qualified BSPs are available for various boards of our HW • OpenVPN • Lighttpd • Apache 2.4 • Network manager 1.14.6 partners, major embedded board and chip vendors. • Wayland 1.16 • MariaDB 10.3 • Perl 5.28 • And many more • AMD • Intel • Raspberry Pie • NXP • Phytec • Renesas • TQ Systems • Texas Instruments • Xilinx • Others Project Templates and customizable Feature Sets APPLICATION DEVELOPMENT Pre-configured templates and building blocks for typical Developing embedded applications needs special embedded Linux usage domains are supplied to support a fast and easy project start. support from the development environment. Direct • Network Device • Web server • QT embedded • GTK • X11 target connection for remote debugging, timing • Wayland / Weston • Minimal footprint Linux • Others analysis and to gather runtime information is provided by the Eclipse-based CODEO (included in ELinOS). Simulation Targets The CODEO IDE includes QEMU-based target HW emulators, Application Debugging allowing to run the project on a desktop computer. CODEO includes a debugger-based on Eclipse utilizing GDB. Register contents, variable values and break Supported File Systems points can be displayed and edited. Typical Linux, Windows and embedded file systems can be chosen and easily exchanged. Target Analysis • Ext4/3/2 • UBIFS • btrfs • JFFS2 • SquashFS • FAT • NTFS CODEO also includes a target analysing system based • RAM file systems • NFS v4.1 • F2FS • Others on Eclipse. The CODEO trace tool offers extended tracing capabilities, including SMP and 64-bit support. Learn more: www.sysgo.com/codeo TRAININGS, CONSULTING AND SUPPORT We provide an outstanding peer-to-peer support and a broad range of professional services. This includes trainings and projec-specific consulting, live problem ELINOS DEVELOPER BLOG solving with the customer, a one-year E-Mail-based Find posts with high-quality information, how to’s, support for all SYSGO tools and life cycle updates to workarounds, tutorials, user-value orientated insights benefit from ongoing improvements. on embedded Linux in general and ELinOS in particular. Learn more: www.sysgo.com/service Learn more: www.sysgo.com/elinos-blog Founded in 1991, SYSGO became a trusted advisor for Embedded Operating Systems and is the European leader in hypervisor-based OS technology offering worldwide product life cycle support. We are well positioned to meet customer needs in all industries and offer tailor-made solutions with highest expectations in Safety & Security. More information at www.sysgo.com/elinos Rel. 1.2 (PUBLIC) © 2021-03 by SYSGO GmbH // SYSGO, ELinOS, SYSGO Headquarters SYSGO France SYSGO Czech Republic PikeOS, and CODEO are trademarks or registered trademarks Phone +49 6136 9948 500 Phone +33 1 30 09 12 70 Phone +420 222 138 111 of SYSGO GmbH. All other products, logos and service names www.sysgo.com are the trademarks of their resp. owners. [email protected] .
Recommended publications
  • Development of a Verified Flash File System ⋆
    Development of a Verified Flash File System ? Gerhard Schellhorn, Gidon Ernst, J¨orgPf¨ahler,Dominik Haneberg, and Wolfgang Reif Institute for Software & Systems Engineering University of Augsburg, Germany fschellhorn,ernst,joerg.pfaehler,haneberg,reifg @informatik.uni-augsburg.de Abstract. This paper gives an overview over the development of a for- mally verified file system for flash memory. We describe our approach that is based on Abstract State Machines and incremental modular re- finement. Some of the important intermediate levels and the features they introduce are given. We report on the verification challenges addressed so far, and point to open problems and future work. We furthermore draw preliminary conclusions on the methodology and the required tool support. 1 Introduction Flaws in the design and implementation of file systems already lead to serious problems in mission-critical systems. A prominent example is the Mars Explo- ration Rover Spirit [34] that got stuck in a reset cycle. In 2013, the Mars Rover Curiosity also had a bug in its file system implementation, that triggered an au- tomatic switch to safe mode. The first incident prompted a proposal to formally verify a file system for flash memory [24,18] as a pilot project for Hoare's Grand Challenge [22]. We are developing a verified flash file system (FFS). This paper reports on our progress and discusses some of the aspects of the project. We describe parts of the design, the formal models, and proofs, pointing out challenges and solutions. The main characteristic of flash memory that guides the design is that data cannot be overwritten in place, instead space can only be reused by erasing whole blocks.
    [Show full text]
  • Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
    Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes.
    [Show full text]
  • Open Source Licensing Information for Cisco IP Phone 8800 Series
    Open Source Used In Cisco IP Phone 8800 Series 12.1(1) Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-163803748 Open Source Used In Cisco IP Phone 8800 Series 12.1(1) 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-163803748 Contents 1.1 bluez 4.101 :MxC-1.1C R4.0 1.1.1 Available under license 1.2 BOOST C++ Library 1.63.0 1.2.1 Available under license 1.3 busybox 1.21.0 1.3.1 Available under license 1.4 Busybox 1.23.1 1.4.1 Available under license 1.5 cjose 0.4.1 1.5.1 Available under license 1.6 cppformat 2.0.0 1.6.1 Available under license 1.7 curl 7.26.0 1.7.1 Available under license 1.8 dbus 1.4.1 :MxC-1.1C R4.0 1.8.1 Available under license 1.9 DirectFB library and utilities 1.4.5 1.9.1 Available under license 1.10 dnsmasq 2.46 1.10.1 Available under license 1.11 flite 2.0.0 1.11.1 Available under license 1.12 glibc 2.13 1.12.1 Available under license 1.13 hostapd 2.0 :MxC-1.1C R4.0 1.13.1 Available under license Open Source Used
    [Show full text]
  • De-Anonymizing Live Cds Through Physical Memory Analysis
    De-Anonymizing Live CDs through Physical Memory Analysis Andrew Case [email protected] Digital Forensics Solutions Abstract Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk image. Since the filesystem is intact on these images, a number of forensics techniques are available for analysis such as file and metadata examination, timelining, deleted file recovery, indexing, and searching. Live CDs present a serious problem for this investigative model, however, since the OS and applications execute in a RAM-only environment and do not save data on non-volatile storage devices such as the local disk. In order to solve this problem, we present a number of techniques that support complete recovery of a live CD’s in-memory filesystem and partial recovery of its deleted contents. We also present memory analysis of the popular Tor application, since it is used by a number of live CDs in an attempt to keep network communications encrypted and anonymous. 1 Introduction Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk image. Under normal circumstances, evidence is obtained by first creating an exact, bit-for-bit copy of the target disk, followed by hashing of both the target disk and the new copy. If these hashes match then it is known that an exact copy has been made, and the hash is recorded to later prove that evidence was not modified during the investigation. Besides satisfying legal requirements, obtaining a bit-for-bit copy of data provides investigators with a wealth of information to examine and makes available a number of forensics techniques.
    [Show full text]
  • Hardware-Driven Evolution in Storage Software by Zev Weiss A
    Hardware-Driven Evolution in Storage Software by Zev Weiss A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2018 Date of final oral examination: June 8, 2018 ii The dissertation is approved by the following members of the Final Oral Committee: Andrea C. Arpaci-Dusseau, Professor, Computer Sciences Remzi H. Arpaci-Dusseau, Professor, Computer Sciences Michael M. Swift, Professor, Computer Sciences Karthikeyan Sankaralingam, Professor, Computer Sciences Johannes Wallmann, Associate Professor, Mead Witter School of Music i © Copyright by Zev Weiss 2018 All Rights Reserved ii To my parents, for their endless support, and my cousin Charlie, one of the kindest people I’ve ever known. iii Acknowledgments I have taken what might be politely called a “scenic route” of sorts through grad school. While Ph.D. students more focused on a rapid graduation turnaround time might find this regrettable, I am glad to have done so, in part because it has afforded me the opportunities to meet and work with so many excellent people along the way. I owe debts of gratitude to a large cast of characters: To my advisors, Andrea and Remzi Arpaci-Dusseau. It is one of the most common pieces of wisdom imparted on incoming grad students that one’s relationship with one’s advisor (or advisors) is perhaps the single most important factor in whether these years of your life will be pleasant or unpleasant, and I feel exceptionally fortunate to have ended up iv with the advisors that I’ve had.
    [Show full text]
  • Filesystem Considerations for Embedded Devices ELC2015 03/25/15
    Filesystem considerations for embedded devices ELC2015 03/25/15 Tristan Lelong Senior embedded software engineer Filesystem considerations ABSTRACT The goal of this presentation is to answer a question asked by several customers: which filesystem should you use within your embedded design’s eMMC/SDCard? These storage devices use a standard block interface, compatible with traditional filesystems, but constraints are not those of desktop PC environments. EXT2/3/4, BTRFS, F2FS are the first of many solutions which come to mind, but how do they all compare? Typical queries include performance, longevity, tools availability, support, and power loss robustness. This presentation will not dive into implementation details but will instead summarize provided answers with the help of various figures and meaningful test results. 2 TABLE OF CONTENTS 1. Introduction 2. Block devices 3. Available filesystems 4. Performances 5. Tools 6. Reliability 7. Conclusion Filesystem considerations ABOUT THE AUTHOR • Tristan Lelong • Embedded software engineer @ Adeneo Embedded • French, living in the Pacific northwest • Embedded software, free software, and Linux kernel enthusiast. 4 Introduction Filesystem considerations Introduction INTRODUCTION More and more embedded designs rely on smart memory chips rather than bare NAND or NOR. This presentation will start by describing: • Some context to help understand the differences between NAND and MMC • Some typical requirements found in embedded devices designs • Potential filesystems to use on MMC devices 6 Filesystem considerations Introduction INTRODUCTION Focus will then move to block filesystems. How they are supported, what feature do they advertise. To help understand how they compare, we will present some benchmarks and comparisons regarding: • Tools • Reliability • Performances 7 Block devices Filesystem considerations Block devices MMC, EMMC, SD CARD Vocabulary: • MMC: MultiMediaCard is a memory card unveiled in 1997 by SanDisk and Siemens based on NAND flash memory.
    [Show full text]
  • System Calls Instrumentation for Intrusion Detection In
    System Calls Instrumentation for Intrusion Detection in Embedded Mixed-Criticality Systems Marine Kadar SYSGO GmbH, Klein-Winternheim, Germany [email protected] Sergey Tverdyshev SYSGO GmbH, Klein-Winternheim, Germany [email protected] Gerhard Fohler Technische Universität Kaiserslautern, Germany [email protected] Abstract System call relative information such as occurrences, type, parameters, and return values are well established metrics to reveal intrusions in a system software. Many Host Intrusion Detection Systems (HIDS) from research and industry analyze these data for continuous system monitoring at runtime. Despite a significant false alarm rate, this type of defense offers high detection precision for both known and zero-day attacks. Recent research focuses on HIDS deployment for desktop computers. Yet, the integration of such run-time monitoring solution in mixed-criticality embedded systems has not been discussed. Because of the cohabitation of potentially vulnerable non-critical software with critical software, securing mixed-criticality systems is a non trivial but essential issue. Thus, we propose a methodology to evaluate the impact of deploying system call instrumentation in such context. We analyze the impact in a concrete use-case with PikeOS real-time hypervisor. 2012 ACM Subject Classification Security and privacy → Embedded systems security; Security and privacy → Intrusion detection systems Keywords and phrases Instrumentation, Mixed-criticality, Real-Time, System Calls, Host Intrusion Detection Systems Digital Object Identifier 10.4230/OASIcs.CERTS.2019.2 Funding This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764785, FORA—Fog Computing for Robotics and Industrial Automation.
    [Show full text]
  • Unionfs: User- and Community-Oriented Development of a Unification File System
    Unionfs: User- and Community-Oriented Development of a Unification File System David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok Stony Brook University {dquigley,jsipek,cwright,ezk}@cs.sunysb.edu Abstract If a file exists in multiple branches, the user sees only the copy in the higher-priority branch. Unionfs allows some branches to be read-only, Unionfs is a stackable file system that virtually but as long as the highest-priority branch is merges a set of directories (called branches) read-write, Unionfs uses copy-on-write seman- into a single logical view. Each branch is as- tics to provide an illusion that all branches are signed a priority and may be either read-only writable. This feature allows Live-CD develop- or read-write. When the highest priority branch ers to give their users a writable system based is writable, Unionfs provides copy-on-write se- on read-only media. mantics for read-only branches. These copy- on-write semantics have lead to widespread There are many uses for namespace unifica- use of Unionfs by LiveCD projects including tion. The two most common uses are Live- Knoppix and SLAX. In this paper we describe CDs and diskless/NFS-root clients. On Live- our experiences distributing and maintaining CDs, by definition, the data is stored on a read- an out-of-kernel module since November 2004. only medium. However, it is very convenient As of March 2006 Unionfs has been down- for users to be able to modify the data. Uni- loaded by over 6,700 unique users and is used fying the read-only CD with a writable RAM by over two dozen other projects.
    [Show full text]
  • Debian \ Amber \ Arco-Debian \ Arc-Live \ Aslinux \ Beatrix
    Debian \ Amber \ Arco-Debian \ Arc-Live \ ASLinux \ BeatriX \ BlackRhino \ BlankON \ Bluewall \ BOSS \ Canaima \ Clonezilla Live \ Conducit \ Corel \ Xandros \ DeadCD \ Olive \ DeMuDi \ \ 64Studio (64 Studio) \ DoudouLinux \ DRBL \ Elive \ Epidemic \ Estrella Roja \ Euronode \ GALPon MiniNo \ Gibraltar \ GNUGuitarINUX \ gnuLiNex \ \ Lihuen \ grml \ Guadalinex \ Impi \ Inquisitor \ Linux Mint Debian \ LliureX \ K-DEMar \ kademar \ Knoppix \ \ B2D \ \ Bioknoppix \ \ Damn Small Linux \ \ \ Hikarunix \ \ \ DSL-N \ \ \ Damn Vulnerable Linux \ \ Danix \ \ Feather \ \ INSERT \ \ Joatha \ \ Kaella \ \ Kanotix \ \ \ Auditor Security Linux \ \ \ Backtrack \ \ \ Parsix \ \ Kurumin \ \ \ Dizinha \ \ \ \ NeoDizinha \ \ \ \ Patinho Faminto \ \ \ Kalango \ \ \ Poseidon \ \ MAX \ \ Medialinux \ \ Mediainlinux \ \ ArtistX \ \ Morphix \ \ \ Aquamorph \ \ \ Dreamlinux \ \ \ Hiwix \ \ \ Hiweed \ \ \ \ Deepin \ \ \ ZoneCD \ \ Musix \ \ ParallelKnoppix \ \ Quantian \ \ Shabdix \ \ Symphony OS \ \ Whoppix \ \ WHAX \ LEAF \ Libranet \ Librassoc \ Lindows \ Linspire \ \ Freespire \ Liquid Lemur \ Matriux \ MEPIS \ SimplyMEPIS \ \ antiX \ \ \ Swift \ Metamorphose \ miniwoody \ Bonzai \ MoLinux \ \ Tirwal \ NepaLinux \ Nova \ Omoikane (Arma) \ OpenMediaVault \ OS2005 \ Maemo \ Meego Harmattan \ PelicanHPC \ Progeny \ Progress \ Proxmox \ PureOS \ Red Ribbon \ Resulinux \ Rxart \ SalineOS \ Semplice \ sidux \ aptosid \ \ siduction \ Skolelinux \ Snowlinux \ srvRX live \ Storm \ Tails \ ThinClientOS \ Trisquel \ Tuquito \ Ubuntu \ \ A/V \ \ AV \ \ Airinux \ \ Arabian
    [Show full text]
  • Scibian 9 HPC Installation Guide
    Scibian 9 HPC Installation guide CCN-HPC Version 1.9, 2018-08-20 Table of Contents About this document . 1 Purpose . 2 Structure . 3 Typographic conventions . 4 Build dependencies . 5 License . 6 Authors . 7 Reference architecture. 8 1. Hardware architecture . 9 1.1. Networks . 9 1.2. Infrastructure cluster. 10 1.3. User-space cluster . 12 1.4. Storage system . 12 2. External services . 13 2.1. Base services. 13 2.2. Optional services . 14 3. Software architecture . 15 3.1. Overview . 15 3.2. Base Services . 16 3.3. Additional Services. 19 3.4. High-Availability . 20 4. Conventions . 23 5. Advanced Topics . 24 5.1. Boot sequence . 24 5.2. iPXE Bootmenu Generator. 28 5.3. Debian Installer Preseed Generator. 30 5.4. Frontend nodes: SSH load-balancing and high-availability . 31 5.5. Service nodes: DNS load-balancing and high-availability . 34 5.6. Consul and DNS integration. 35 5.7. Scibian diskless initrd . 37 Installation procedure. 39 6. Overview. 40 7. Requirements . 41 8. Temporary installation node . 44 8.1. Base installation . 44 8.2. Administration environment . 44 9. Internal configuration repository . 46 9.1. Base directories . 46 9.2. Organization settings . 46 9.3. Cluster directories . 48 9.4. Puppet configuration . 48 9.5. Cluster definition. 49 9.6. Service role . 55 9.7. Authentication and encryption keys . 56 10. Generic service nodes . 62 10.1. Temporary installation services . 62 10.2. First Run. 62 10.3. Second Run . 64 10.4. Base system installation. 64 10.5. Ceph deployment . 66 10.6. Consul deployment.
    [Show full text]
  • Key-Based Self-Driven Compression in Columnar Binary JSON
    Otto von Guericke University of Magdeburg Department of Computer Science Master's Thesis Key-Based Self-Driven Compression in Columnar Binary JSON Author: Oskar Kirmis November 4, 2019 Advisors: Prof. Dr. rer. nat. habil. Gunter Saake M. Sc. Marcus Pinnecke Institute for Technical and Business Information Systems / Database Research Group Kirmis, Oskar: Key-Based Self-Driven Compression in Columnar Binary JSON Master's Thesis, Otto von Guericke University of Magdeburg, 2019 Abstract A large part of the data that is available today in organizations or publicly is provided in semi-structured form. To perform analytical tasks on these { mostly read-only { semi-structured datasets, Carbon archives were developed as a column-oriented storage format. Its main focus is to allow cache-efficient access to fields across records. As many semi-structured datasets mainly consist of string data and the denormalization introduces redundancy, a lot of storage space is required. However, in Carbon archives { besides a deduplication of strings { there is currently no compression implemented. The goal of this thesis is to discuss, implement and evaluate suitable compression tech- niques to reduce the amount of storage required and to speed up analytical queries on Carbon archives. Therefore, a compressor is implemented that can be configured to apply a combination of up to three different compression algorithms to the string data of Carbon archives. This compressor can be applied with a different configuration per column (per JSON object key). To find suitable combinations of compression algo- rithms for each column, one manual and two self-driven approaches are implemented and evaluated. On a set of ten publicly available semi-structured datasets of different kinds and sizes, the string data can be compressed down to about 53% on average, reducing the whole datasets' size by 20%.
    [Show full text]
  • Ted Ts'o on Linux File Systems
    Ted Ts’o on Linux File Systems An Interview RIK FARROW Rik Farrow is the Editor of ;login:. ran into Ted Ts’o during a tutorial luncheon at LISA ’12, and that later [email protected] sparked an email discussion. I started by asking Ted questions that had I puzzled me about the early history of ext2 having to do with the perfor- mance of ext2 compared to the BSD Fast File System (FFS). I had met Rob Kolstad, then president of BSDi, because of my interest in the AT&T lawsuit against the University of California and BSDi. BSDi was being sued for, among other things, Theodore Ts’o is the first having a phone number that could be spelled 800-ITS-UNIX. I thought that it was important North American Linux for the future of open source operating systems that AT&T lose that lawsuit. Kernel Developer, having That said, when I compared the performance of early versions of Linux to the current version started working with Linux of BSDi, I found that they were closely matched, with one glaring exception. Unpacking tar in September 1991. He also archives using Linux (likely .9) was blazingly fast compared to BSDi. I asked Rob, and he served as the tech lead for the MIT Kerberos explained that the issue had to do with synchronous writes, finally clearing up a mystery for me. V5 development team, and was the architect at IBM in charge of bringing real-time Linux Now I had a chance to ask Ted about the story from the Linux side, as well as other questions in support of real-time Java to the US Navy.
    [Show full text]