AMATEUR COMPUTER USERS GROUP NEWSLETTER HOMEBREW COMPUTER CLUB Issue Number Two Fred Moore, Editor, 558 Santa Cruz Ave., Menlo Park, Ca
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cromemco 3K Control Basic Instruction Manual 023-0023 197904
l•• CROMEMCO 3K CONTROL BASIC INSTRUCTION MANUAL J (Models MCB-216 & CB-308) \":'f,_'~", ~,-:- \ 1I q q .'.':&...•• q~"'!'-- - ~.' q..~¥_..../ CROMEMCO; INC. q 280 Berna rd'o Avenue Mountain View, CA 94043 >""1 ;~ Part No. 023-0023 April 1979 ~r Copyright © 1977, 1979 By CROMEMCO, INC. I' _ All Rights Reserved ...i· ... I'-. •I r This manual was produced in its entirety with the Cromemco Word ( Processing System and was printed on a Cromemco 3355 P r in t e r wit h pro po r t ion a 1 I spacing. I ,I I I I I I I I 1 ~~ J Table of Contents I Section 1 1 Introduct ion . ....... 1 2 Getting Started with Control Basic 3 1 2.1 Installing Control Basic in Your System ••• 3 2.2 Entering programs from the Console Device 3 2.3 Entering or Saving Programs l with Other Devices •••••• 4 3 Elements of the Control Basic Language 6 1 3.1 Numbers and Constants • •••• 6 3.2 Variables •••• •• • ••• 6 3.3 Functions •••••••• ••• 7 .4 3.4 Arithmetic and Compare Operators 8 3.5 Expressions • •• ••• 9 4 Control Basic Syntax 10 4.1 Control Basic General Syntax •••• 10 4.2 Abbreviations and Summary of Commands 12 4.3 Memory Organization of Control Basic 14 .1 5 Control Basic Commands and Statements 16 5.1 Assignment Commands •••••• 16 5.1.1 LET Command 16 5.1.2 PUT Command ••••••••• 16 1 5.2 Control Commands 18 5.2.1 IF Command ••••••• 18 5.2.2 GOTO Command •••••••••••• 18 .1 5.2.3 FOR Command. -
Also Includes Slides and Contents From
The Compilation Toolchain Cross-Compilation for Embedded Systems Prof. Andrea Marongiu ([email protected]) Toolchain The toolchain is a set of development tools used in association with source code or binaries generated from the source code • Enables development in a programming language (e.g., C/C++) • It is used for a lot of operations such as a) Compilation b) Preparing Libraries Most common toolchain is the c) Reading a binary file (or part of it) GNU toolchain which is part of d) Debugging the GNU project • Normally it contains a) Compiler : Generate object files from source code files b) Linker: Link object files together to build a binary file c) Library Archiver: To group a set of object files into a library file d) Debugger: To debug the binary file while running e) And other tools The GNU Toolchain GNU (GNU’s Not Unix) The GNU toolchain has played a vital role in the development of the Linux kernel, BSD, and software for embedded systems. The GNU project produced a set of programming tools. Parts of the toolchain we will use are: -gcc: (GNU Compiler Collection): suite of compilers for many programming languages -binutils: Suite of tools including linker (ld), assembler (gas) -gdb: Code debugging tool -libc: Subset of standard C library (assuming a C compiler). -bash: free Unix shell (Bourne-again shell). Default shell on GNU/Linux systems and Mac OSX. Also ported to Microsoft Windows. -make: automation tool for compilation and build Program development tools The process of converting source code to an executable binary image requires several steps, each with its own tool. -
Steve Wozniak Was Born in 1950 Steve Jobs in 1955, Both Attended Homestead High School, Los Altos, California
Steve Wozniak was born in 1950 Steve Jobs in 1955, both attended Homestead High School, Los Altos, California, Wozniak dropped out of Berkeley, took a job at Hewlett-Packard as an engineer. They met at HP in 1971. Jobs was 16 and Wozniak 21. 1975 Wozniak and Jobs in their garage working on early computer technologies Together, they built and sold a device called a “blue box.” It could hack AT&T’s long-distance network so that phone calls could be made for free. Jobs went to Oregon’s Reed College in 1972, quit in 1974, and took a job at Atari designing video games. 1974 Wozniak invited Jobs to join the ‘Homebrew Computer Club’ in Palo Alto, a group of electronics-enthusiasts who met at Stanford 1974 they began work on what would become the Apple I, essentially a circuit board, in Jobs’ bedroom. 1976 chiefly by Wozniak’s hand, they had a small, easy-to-use computer – smaller than a portable typewriter. In technical terms, this was the first single-board, microprocessor-based microcomputer (CPU, RAM, and basic textual-video chips) shown at the Homebrew Computer Club. An Apple I computer with a custom-built wood housing with keyboard. They took their new computer to the companies they were familiar with, Hewlett-Packard and Atari, but neither saw much demand for a “personal” computer. Jobs proposed that he and Wozniak start their own company to sell the devices. They agreed to go for it and set up shop in the Jobs’ family garage. Apple I A main circuit board with a tape-interface sold separately, could use a TV as the display system, text only. -
Computer Architecture and Assembly Language
Computer Architecture and Assembly Language Gabriel Laskar EPITA 2015 License I Copyright c 2004-2005, ACU, Benoit Perrot I Copyright c 2004-2008, Alexandre Becoulet I Copyright c 2009-2013, Nicolas Pouillon I Copyright c 2014, Joël Porquet I Copyright c 2015, Gabriel Laskar Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being just ‘‘Copying this document’’, no Front-Cover Texts, and no Back-Cover Texts. Introduction Part I Introduction Gabriel Laskar (EPITA) CAAL 2015 3 / 378 Introduction Problem definition 1: Introduction Problem definition Outline Gabriel Laskar (EPITA) CAAL 2015 4 / 378 Introduction Problem definition What are we trying to learn? Computer Architecture What is in the hardware? I A bit of history of computers, current machines I Concepts and conventions: processing, memory, communication, optimization How does a machine run code? I Program execution model I Memory mapping, OS support Gabriel Laskar (EPITA) CAAL 2015 5 / 378 Introduction Problem definition What are we trying to learn? Assembly Language How to “talk” with the machine directly? I Mechanisms involved I Assembly language structure and usage I Low-level assembly language features I C inline assembly Gabriel Laskar (EPITA) CAAL 2015 6 / 378 I Programmers I Wise managers Introduction Problem definition Who do I talk to? I System gurus I Low-level enthusiasts Gabriel Laskar (EPITA) CAAL -
Compiler Construction
Compiler Construction Chapter 11 Compiler Construction Compiler Construction 1 A New Compiler • Perhaps a new source language • Perhaps a new target for an existing compiler • Perhaps both Compiler Construction Compiler Construction 2 Source Language • Larger, more complex languages generally require larger, more complex compilers • Is the source language expected to evolve? – E.g., Java 1.0 ! Java 1.1 ! . – A brand new language may undergo considerable change early on – A small working prototype may be in order – Compiler writers must anticipate some amount of change and their design must therefore be flexible – Lexer and parser generators (like Lex and Yacc) are therefore better than hand- coding the lexer and parser when change is inevitable Compiler Construction Compiler Construction 3 Target Language • The nature of the target language and run-time environment influence compiler construction considerably • A new processor and/or its assembler may be buggy Buggy targets make it difficult to debug compilers for that target! • A successful source language will persist over several target generations – E.g., 386 ! 486 ! Pentium ! . – Thus the design of the IR is important – Modularization of machine-specific details is also important Compiler Construction Compiler Construction 4 Compiler Performance Issues • Compiler speed • Generated code quality • Error diagnostics • Portability • Maintainability Compiler Construction Compiler Construction 5 Compiler Speed • Reduce the number of modules • Reduce the number of passes Perhaps generate machine -
Hardware and Software Companies During the Microcomputer Revolution
Technology Companies Hardware and software houses of the microcomputer age James Tam Recall: Computers Before The Microprocessor James Tam Image: “A History of Computing Technology” (Williams) CPSC 409: The Microcomputer era The Microprocessor1, 2 • Intel was commissioned to design a special purpose system for a client. – Busicom (client): A Japanese hand-held calculator manufacturer – Prior to this the core money making business of Intel was manufacturing computer memory. • “Intel designed a set of four chips known as the MCS-4.”1 – The CPU for the chip was the 4004 (1971) – Also it came with ROM, RAM and a chip for I/O – It was found that by designing a general purpose computer and customizing it through software that this system could meet the client’s needs but reach a larger market. – Clock: 108 kHz3 1 http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html 2 https://spectrum.ieee.org/tech-history/silicon-revolution/chip-hall-of-fame-intel-4004-microprocessor James Tam 3 http://www.intel.com/pressroom/kits/quickreffam.htm The Microprocessor1,2 (2) • Intel negotiated an arrangement with Busicom so it could freely sell these chips to others. – Busicom eventually went bankrupt! – Intel purchased the rights to the chip and marketed it on their own. James Tam CPSC 409: The Microcomputer era The Microprocessor (3) • 8080 processor: second 8 bit (data) microprocessor (first was 8008). – Clock speed: 2 MHz – Used to power the Altair computer – Many, many other processors came after this: • 80286, 80386, 80486, Pentium Series I – IV, Celeron, Core • The microprocessors development revolutionized computers by allowing computers to be more widely used. -
Introduction Mainframes
LL I I I I Introduction . 11.. V ZI i ..O. There is little question that the current enthusiasm in personal computing was catalyzed by the introduction of the MITS Altair computer kit in January 1975. This computer kit demonstrated by its cost (originally less than $400) that individuals could now afford a computer. And by its design the Altair established a standard bus structure for the personal computing industry. Less than six months after MITS announced the Altair computer, other manufacturers were announcing com- patible memory boards, interface boards, and peripherals. Within the year bus-compatible mainframes were also introduced. Today over 50 manufacturers support what is known as the Standard 100 or S-100 bus derived from the 100-wire bus used in the original Altair computer. Over 20,000 mainframes using the S-100 bus are now in the field. One key reason for the rapid growth of the personal computer industry can be found in the widespread adoption of a standard microcomputer bus. A second key reason can be found in the design innovations in mainframes, memories, and I/O interfaces designed for the S-100 bus. Figure 1. The basic personal computer can accept a number of standard 5" x 10" cards designed for the industry standard S-100 microcomputer bus. A large selection of CPU, memory, and interface cards offers a great deal of flexibility in system Mainframes design. The basic personal computer mainframe consists of a CPU, computer bus, and power supply. Most mainframes are sold in kit form (Figure 1). Without exception in the personal computing industry of manufacturer support for the S-100 bus, no fewer than a microprocessor serves as the CPU. -
Timeline of Computer History
Timeline of Computer History By Year By Category Search AI & Robotics (55) Computers (145)(145) Graphics & Games (48) Memory & Storage (61) Networking & The Popular Culture (50) Software & Languages (60) Bell Laboratories scientist 1937 George Stibitz uses relays for a Hewlett-Packard is founded demonstration adder 1939 Hewlett and Packard in their garage workshop “Model K” Adder David Packard and Bill Hewlett found their company in a Alto, California garage. Their first product, the HP 200A A Called the “Model K” Adder because he built it on his Oscillator, rapidly became a popular piece of test equipm “Kitchen” table, this simple demonstration circuit provides for engineers. Walt Disney Pictures ordered eight of the 2 proof of concept for applying Boolean logic to the design of model to test recording equipment and speaker systems computers, resulting in construction of the relay-based Model the 12 specially equipped theatres that showed the movie I Complex Calculator in 1939. That same year in Germany, “Fantasia” in 1940. engineer Konrad Zuse built his Z2 computer, also using telephone company relays. The Complex Number Calculat 1940 Konrad Zuse finishes the Z3 (CNC) is completed Computer 1941 The Zuse Z3 Computer The Z3, an early computer built by German engineer Konrad Zuse working in complete isolation from developments elsewhere, uses 2,300 relays, performs floating point binary arithmetic, and has a 22-bit word length. The Z3 was used for aerodynamic calculations but was destroyed in a bombing raid on Berlin in late 1943. Zuse later supervised a reconstruction of the Z3 in the 1960s, which is currently on Operator at Complex Number Calculator (CNC) display at the Deutsches Museum in Munich. -
FF7W Sponsors ACR Standards Meeting and from There to the Factory It Is Just a Short Walk
HITS MOVING TO EXPANDED FACILITY by David Bunnell tentatively scheduled for March, Altairs to Albuquerque for demonstra- 1976. All Altair owners will be in- tion purposes. Prizes worth several By the end of January, 1976, it vited to attend this convention. thousand dollars will be awarded to is hoped that MITS will be in its the best demonstrations in each of new facility near the Albuquerque While formal plans for this an undetermined number of catagories. Airport. Internal construction has convention have not been finalized, (We will be looking for unique ap- been in progress for several weeks $ an outline of this event calls for a plications as well as well-developed and plans call for moving the pro- weekend of seminars and demonstra- traditional applications.) duction department before Christmas. tions. The seminars will be con- Administrative departments will move ducted by MITS engineers and software writers and will cover a wide range during January. Since the new MITS plant is of topics of interest to Altair users. located close to the Albuquerque In connection with this move, Airport, it will be very convenient there will be a combined open-house, Hobby clubs and individual Al- for out-of-town Altair users to at- World Altair Computer Convention, tair owners are asked to bring their tend the convention. Hotel reserva- tions can be made at the Albuquerque Airport Marina Hotel across the street from the terminal building, FF7W Sponsors ACR Standards Meeting and from there to the factory it is just a short walk. Users and manufacturers of audio The rest of the meeting was cassette data recording hardware at- spent primarily on discussion of mod- tended a symposium sponsored by BYTE ulation techniques. -
CP/M-80 Kaypro
$3.00 June-July 1985 . No. 24 TABLE OF CONTENTS C'ing Into Turbo Pascal ....................................... 4 Soldering: The First Steps. .. 36 Eight Inch Drives On The Kaypro .............................. 38 Kaypro BIOS Patch. .. 40 Alternative Power Supply For The Kaypro . .. 42 48 Lines On A BBI ........ .. 44 Adding An 8" SSSD Drive To A Morrow MD-2 ................... 50 Review: The Ztime-I .......................................... 55 BDOS Vectors (Mucking Around Inside CP1M) ................. 62 The Pascal Runoff 77 Regular Features The S-100 Bus 9 Technical Tips ........... 70 In The Public Domain... .. 13 Culture Corner. .. 76 C'ing Clearly ............ 16 The Xerox 820 Column ... 19 The Slicer Column ........ 24 Future Tense The KayproColumn ..... 33 Tidbits. .. .. 79 Pascal Procedures ........ 57 68000 Vrs. 80X86 .. ... 83 FORTH words 61 MSX In The USA . .. 84 On Your Own ........... 68 The Last Page ............ 88 NEW LOWER PRICES! NOW IN "UNKIT"* FORM TOO! "BIG BOARD II" 4 MHz Z80·A SINGLE BOARD COMPUTER WITH "SASI" HARD·DISK INTERFACE $795 ASSEMBLED & TESTED $545 "UNKIT"* $245 PC BOARD WITH 16 PARTS Jim Ferguson, the designer of the "Big Board" distributed by Digital SIZE: 8.75" X 15.5" Research Computers, has produced a stunning new computer that POWER: +5V @ 3A, +-12V @ 0.1A Cal-Tex Computers has been shipping for a year. Called "Big Board II", it has the following features: • "SASI" Interface for Winchester Disks Our "Big Board II" implements the Host portion of the "Shugart Associates Systems • 4 MHz Z80-A CPU and Peripheral Chips Interface." Adding a Winchester disk drive is no harder than attaching a floppy-disk The new Ferguson computer runs at 4 MHz. -
The History of Apple Inc
The History of Apple Inc. Veronica Holme-Harvey 2-4 History 12 Dale Martelli November 21st, 2018 Apple Inc is a multinational corporation that creates many different types of electronics, with a large chain of retail stores, “Apple Stores”. Their main product lines are the iPhone, iPad, and Macintosh computer. The company was founded by Steve Jobs and Steve Wozniak and was created in 1977 in Cupertino, California. Apple Inc. is one of the world’s largest and most successful companies, recently being the first US company to hit a $1 trillion value. They shaped the way computers operate and look today, and, without them, numerous computer products that we know and love today would not exist. Although Apple is an extremely successful company today, they definitely did not start off this way. They have a long and complicated history, leading up to where they are now. Steve Jobs was one of the co-founders of Apple Inc. and one of first developers of the personal computer era. He was the CEO of Apple, and is what most people think of when they think ”the Apple founder”. Besides this, however, Steve Jobs was also later the chairman and majority shareholder of Pixar, and a member of The Walt Disney Company's board of directors after Pixar was bought out, and the founder, chairman, and CEO of NeXT. Jobs was born on February 24th, 1955 in San Francisco, California. He was raised by adoptive parents in Cupertino, California, located in what is now known as the Silicon Valley, and where the Apple headquarters is still located today. -
NEWSLETTER Computer
NEWSLETTER Computer x ' ' - 4 i■ Volume 3 — Issue 5 August-September 1978 Users GroupBob Reiling Additional Meetings ■ W F -' Scheduled This js a short list of user groups that meet in the Bay Area. No doubt many more exist but I do not Additional meetings of the Homebrew have any inform ation about them. Send me inform a Computer Club have just been scheduled. tion about your group and it will be reported in the The dates are listed in the table in addition N ewsl fetter. "** to previously scheduled dates. You are encouraged to bring your equipment and SOL USERS' SOCIETY (SOLUS) - S.F. Peninsula software for display at the meetings. Chapter meets third Sunday of each month beginning Manufacturers and computer stores are at 1 p.m. at" Stanford Physics Building. Other chapters included in this invitation. Fairchild - throughout USA and Canada. Auditorium has a large lobby area which TRS 80 USERS GROUP - Meets at Radio Shack is well suited for display. One caution, Wednesdays 7:30 p.m. Payne Ave. Radio Shack, however: commercial transactions may not Campbell, (408) 247-5300: Call early in week to con be completed on Stanford premises. firm schedule. 1978 Meeting Schedule AM I PROTO USERS & SW TPC USERS - Meets in 7:00 pm -10:30 pm. Room 210t Brànnon Hall; University of Santa Clara, first Tuesday of month at 7:30 p.m. Date Location September 27 Fairchild Auditorium PET USERS GROUP — President Marvin VanDerKoor October 11 SLAC Auditorium will coordinate group. Request additional meeting November 8 SLAC Auditorium at the next HCC meeting.