The American Landsat Earth Observation Satellite in Use, 1953-2008

Total Page:16

File Type:pdf, Size:1020Kb

The American Landsat Earth Observation Satellite in Use, 1953-2008 ONE SATELLITE FOR THE WORLD: THE AMERICAN LANDSAT EARTH OBSERVATION SATELLITE IN USE, 1953-2008 A Dissertation Presented to The Academic Faculty By Brian Michael Jirout In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in History and Sociology of Technology and Science Georgia Institute of Technology May 2017 Copyright © Brian Michael Jirout 2017 ONE SATELLITE FOR THE WORLD: THE AMERICAN LANDSAT EARTH OBSERVATION SATELLITE IN USE, 1953-2008 Approved by: Dr. John Krige, Advisor School of History and Sociology Georgia Institute of Technology Dr. Roger Launius National Air and Space Museum Smithsonian Institution Dr. Kristie Macrakis School of History and Sociology Georgia Institute of Technology Dr. Neil Maher Federated Department of History New Jersey Institute of Technology and Rutgers University at Newark Dr. Jenny Leigh Smith School of History and Sociology Georgia Institute of Technology Date approved: 2 December 2016 2 ACKNOWLEDGEMENTS It certainly takes a village to raise child, and this clichéd idiom very much is true of a graduate student undertaking a dissertation as well. When I was a child growing up, I always had a distinct interest in geography and history, but in college, I ultimately had to study one or the other. I am deeply thankful that I was able to combine these interests in graduate school and study these fields simultaneously. Really, I simply wanted to research and write a thesis that would allow me to travel and look at a lot of maps. I have been so excited and humbled that I had an unending amount of support and interest from so many people in this endeavor. I would not be the person I am today without it. Of course the errors are my own, but this document reflects an experience I would not trade for another because of all the people mentioned here. My committee was supportive from the start. I am so grateful to say that each of you were instrumental in my education and an inquisitive mentor. I appreciate every moment of help and patience with my work and all the careful, constructive criticism. I first met Roger Launius at SHOT in Cleveland in 2010. He always asked point blank the tough questions and told me how to write a dissertation in a straight forward way. Roger was also crucial to meeting several people who led me to the resources I needed to write this dissertation. It was truly a pleasure to work for him as an intern and later a fellow at the Smithsonian National Air and Space Museum. I am especially thankful to Roger for making my time in Washington as rigorous as it was enjoyable. Kristie Macrakis first triggered my interest in Earth observation satellites. In my first graduate course ever, she encouraged me to read about the Corona spy satellites and intelligence. While I did not pursue Corona, it was not long after that I was obsessed with studying Landsat and the intelligence community. She tirelessly read this dissertation in its entirety offering the most detailed feedback making this revision enjoyable. Dr. Jenny Smith provided valuable iii insight encouraging me to think about Landsat and its data in different ways and I am very thankful for her instruction and support through my comps in environmental history. While at a conference at University of Pennsylvania, I met Dr. Neil Maher who became an invaluable member of my committee. I thank him for his support, encouragement, and brilliant reading of my work that challenged me to write about Landsat in compelling, creative ways. Dr. Doug Flamming is another member of HSOC who was especially helpful as I prepared for my comps but even more inspiring as someone whom I learned how to teach from. Most of all, I most graciously thank John Krige for his unending patience, charisma, and brilliance that inspired me to pursue this dissertation. He often says that to complete a dissertation, such as this one, it takes passion. His passion for history that inspired me to attend Georgia Tech and his challenging questions, support, and enthusiasm for his graduate students that kept me inspired. John Krige fought hard to make sure all my intellectual goals happened, whether it was studying in France, winning fellowships, or attending conferences as far away as Vancouver and Copenhagen, I am forever thankful for his efforts making my goals a reality. I am forever indebted to him and will always appreciate his time, effort, and commitment to making me into the scholar I envisioned I could be. While dissertations are written independently, I shared this experience and learned from so many others. The graduate community of HSOC (well, to me it was HTS) helped me grow and I owe them a lot of appreciation for letting me talk endlessly about space, Landsat, bureaucracy, and the like. In particular, Dr. Hyoung Joon An, Dr. Liang Yao, Jonah Bea-Taylor, and Amanda Domingues are especially due thanks. They lent their time, intellect, and patience (and even sometimes their couches to sleep on!) and offered insights into my work I often left unseen. As I go forward, I wish them the very best and am proud to say they are more than just iv colleagues, but friends. I have had the pleasure of meeting students in other departments as well, I appreciate Ruth Rand of University of Pennsylvania (now University of Wisconsin) for bringing me up to Philadelphia for WHEATS as well as Emily Margolis of Johns Hopkins for reading over one of my chapters. At times, this dissertation seems to be an alphabet soup of government agencies. Behind those strings of letters are hardworking civil servants who helped bring this dissertation to life. At NASA, Steve Garber, Jane Odom, Colin Fries, and Liz Suckow worked hard to make sure I had all the records necessary to understand the intricate details of the Landsat program. These individuals also made it an enjoyable and stimulating visit to the space agency. Also within NASA at the Goddard Spaceflight Center, I appreciate Jim Irons’ help and time talking about Landsat’s agricultural applications. I also visited the U.S. Geological Survey Headquarters in Virginia and its Earth Resources Observation and Science Center (EROS) in South Dakota where I met and talked with John Faundeen, Thomas Holm, Kristie Kline, Eugene Fosnight, Steve Labahn, and Tom Loveland. Each of these individuals showed me around EROS and truly brought Landsat to life for me showing how Landsat data is gathered and used. I am very appreciative for their time and insight. At USGS HQ back in Virginia, Raymond Byrnes was extremely helpful and kind offering his time and office to help me. His experience working with Landsat from the very beginning and for EOSAT added an invaluable perspective on Landsat documents could not reveal. I also appreciate James Baker’s time and assistance as the former NOAA Administrator. Others from industry I must thank for their time is James Zimmerman and Darrel Williams, both formerly of NASA who shed valuable light on Landsat in its formative years. v While at Georgia Tech, I applied for a couple fellowships I thought would be helpful and would let me live in the Washington, D.C. area. I was already both personally and professionally attracted to the bustling center of power upon the Potomac. I am thankful to the American Historical Association and NASA for awarding me the Fellowship in Aerospace History which allowed me to move to and conduct research in the DC area. I then moved onto the Smithsonian National Air and Space Museum, where I interacted some of the most highly supportive and smart scholars in history of technology. In addition to the valuable help of Roger Launius, Paul Ceruzzi, James David, David DeVorkin, Hunter Hollins, Thomas Lassman, Jennifer Levasseur, Mike Neufeld, Matthew Shindell, and Margaret Weitekamp, whose insight and comprehensive knowledge of aerospace history helped hone this dissertation and its conclusions. I also give huge thanks to the American Historical Association, particularly Dana Schaffer, for awarding me the AHA/NASA Fellowship in Aerospace History which allowed me to meet so many of the people mentioned here. Lastly, my friends and family have been an unwavering source of support, encouragement, and love. My two best friends, Hunter Scales and Jeff Elkin, encouraged me from the very beginning asking some of the toughest questions and always encouraging me to keep going. During several research trips to DC, I am thankful to Jeff for letting me stay with him. My parents, Michael and Melissa, thank you for always pushing me hard to do my very best at everything I set my mind to. This dissertation represents the determination and passion you inspired in me to pursue my goals. My sister Allison, who understands the scientific and technical aspects of remote sensing far better than I as she received a Masters in the subject, also was a huge source of encouragement and love since we share a passion for understanding our planet’s beautiful and fragile environment through remote sensing. Countless times I enjoyed our vi conversations about the challenges and breakthroughs she made in her job as a remote sensing specialist in the Everglades and it helped me think more about how Landsat imagery was both a challenge to work with and how it helped her understand more about the planet. It was also truly a privilege to go out on the front lawn with my grandfather’s binoculars and watch the Space Shuttle lift off over the beaches of Florida with my family. These fond memories resonated as I undertook this project and saw it through.
Recommended publications
  • A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth
    remote sensing Review A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth MohammadAli Hemati 1 , Mahdi Hasanlou 1 , Masoud Mahdianpari 2,3,* and Fariba Mohammadimanesh 2 1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran; [email protected] (M.H.); [email protected] (M.H.) 2 C-CORE, 1 Morrissey Road, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada * Correspondence: [email protected] Abstract: With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection Citation: Hemati, M.; Hasanlou, M.; studies.
    [Show full text]
  • NOAA TM GLERL-33. Categorization of Northern Green Bay Ice Cover
    NOAA Technical Memorandum ERL GLERL-33 CATEGORIZATION OF NORTHERN GREEN BAY ICE COVER USING LANDSAT 1 DIGITAL DATA - A CASE STUDY George A. Leshkevich Great Lakes Environmental Research Laboratory Ann Arbor, Michigan January 1981 UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE AlMOSPHERlC ADMINISTRATION Laboratofks Philip M. Klutznick, Sacratary Richard A Frank, Administrator Joseph 0. Fletcher, Acting Director NOTICE The NOAA Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the NOAA Environmental Research Laboratories, or to this publication furnished by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the NOAA Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material men- tioned herein, or which has as its purpose an intent to cause directly or indirectly the advertized product to be used or purchased because of this NOAA Environmental Research Laboratories publication. ii TABLE OF CONTENTS Page Abstract 1. INTRODUCTION 2. DATA SOURCE AND DESCRIPTION OF STUDY AREA 2.1 Data Source 2.2 Description of Study Area 3. DATA ANALYSIS 3.1 Equipment 3.2 Approach 5 4. RESULTS 8 5. CONCLUSIONS AND RECOMMENDATIONS 15 6. ACKNOWLEDGEMENTS 17 7. REFERENCES 17 8. SELECTED BIBLIOGRAPHY 19 iii FIGURES Page 1. Area covered by LANDSAT 1 scene, February 13, 1975. 3 2. LANDSAT 1 false-color image, February 13, 1975, and trainin:: set locations (by group number). 4 3. Transformed variables (1 and 2) for snow covered land (group 13) plotted arouwl the group means for snow- covered ice (group 15).
    [Show full text]
  • Panagiotis Karampelas Thirimachos Bourlai Editors Technologies for Civilian, Military and Cyber Surveillance
    Advanced Sciences and Technologies for Security Applications Panagiotis Karampelas Thirimachos Bourlai Editors Surveillance in Action Technologies for Civilian, Military and Cyber Surveillance Advanced Sciences and Technologies for Security Applications Series editor Anthony J. Masys, Centre for Security Science, Ottawa, ON, Canada Advisory Board Gisela Bichler, California State University, San Bernardino, CA, USA Thirimachos Bourlai, WVU - Statler College of Engineering and Mineral Resources, Morgantown, WV, USA Chris Johnson, University of Glasgow, UK Panagiotis Karampelas, Hellenic Air Force Academy, Attica, Greece Christian Leuprecht, Royal Military College of Canada, Kingston, ON, Canada Edward C. Morse, University of California, Berkeley, CA, USA David Skillicorn, Queen’s University, Kingston, ON, Canada Yoshiki Yamagata, National Institute for Environmental Studies, Tsukuba, Japan The series Advanced Sciences and Technologies for Security Applications comprises interdisciplinary research covering the theory, foundations and domain-specific topics pertaining to security. Publications within the series are peer-reviewed monographs and edited works in the areas of: – biological and chemical threat recognition and detection (e.g., biosensors, aerosols, forensics) – crisis and disaster management – terrorism – cyber security and secure information systems (e.g., encryption, optical and photonic systems) – traditional and non-traditional security – energy, food and resource security – economic security and securitization (including associated
    [Show full text]
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS")
    High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS") DTRA Advanced Systems and Concepts Office April 2001 1 3/23/01 SPONSOR: Defense Threat Reduction Agency - Dr. Jay Davis, Director Advanced Systems and Concepts Office - Dr. Randall S. Murch, Director BACKGROUND: The Defense Threat Reduction Agency (DTRA) was founded in 1998 to integrate and focus the capabilities of the Department of Defense (DoD) that address the weapons of mass destruction (WMD) threat. To assist the Agency in its primary mission, the Advanced Systems and Concepts Office (ASCO) develops and maintains and evolving analytical vision of necessary and sufficient capabilities to protect United States and Allied forces and citizens from WMD attack. ASCO is also charged by DoD and by the U.S. Government generally to identify gaps in these capabilities and initiate programs to fill them. It also provides support to the Threat Reduction Advisory Committee (TRAC), and its Panels, with timely, high quality research. SUPERVISING PROJECT OFFICER: Dr. John Parmentola, Chief, Advanced Operations and Systems Division, ASCO, DTRA, (703)-767-5705. The publication of this document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of the sponsoring agency. 1 Study Participants • DTRA/AS • RAND – John Parmentola – Peter Wilson – Thomas Killion – Roger Molander – William Durch – David Mussington – Terry Heuring – Richard Mesic – James Bonomo • DTRA/TD – Lewis Cohn • Logicon RDA – Les Palkuti – Glenn Kweder – Thomas Kennedy – Rob Mahoney – Kenneth Schwartz – Al Costantine – Balram Prasad • Mission Research Corp. – William White 2 3/23/01 2 Focus of This Briefing • Vulnerability of commercial and government-owned, unclassified satellite constellations in low earth orbit (LEO) to the effects of a high-altitude nuclear explosion.
    [Show full text]
  • Local Area Network and Data Network for the Advanced Earth Observing Satellite, ADEOS System Kohei Arai
    Local area network and data network for the Advanced Earth Observing Satellite, ADEOS system Kohei Arai '* * Earth Observation Center, National Space Development Agency of Japan Abstract NASDA is planning the next generation of earth observation satellite, following MOS-1, MOS-1b, JER3-1, so called Advanced Earth Observing Satellite, ADEOS. ADEOS will carry Ocean Color and Temperature Scanner, OCTS, Advanced Visible and Near Infrared Radiometer, AVNIR and Anouncement Opportunity sensors, AO sensors and will require a quicl< data distribution. Not only direct broadcasting, but also data distribution through a network are usefull for the dissemination of such data. Therefore a data network of which users can access a quicklook image data base in a quasi real time basis is now considered. In order for the preoperational data handling, a local area network is taken into account for an ADEOS ground facility. The processed data are sent to the film recorder through the LAN together with histograms for the generation of look up table for the gamma correction. Key items of the processed data are also transmitted to the information retrieval subsystem for the registration. The aquired quick look data are transmitted to not only the film recorder but also quick look image data base and the information retreival subsystem in a real time basis. The aforementioned ideas and concept for the development of the ADEOS ground facility will be described in the proposed paper. Presented at the ISPRS held in Kyoto, Japan, in July 1988. 1 1 1 .. INTRODUCTION data starting with HOS-1 through ) the Polar respond or demands for earth observation from space, earth observation system consists of not only satellite but also ground facilities including data net\.>lorks for transmission of mission data, should matured and improved.
    [Show full text]
  • USGS Earth Resources Observation and Science (EROS) Center
    USGS Earth Resources Observation and Science (EROS) Center National Satellite Land Remote Sensing Data Archive Report June 2019 U.S. Department of the Interior U.S. Geological Survey NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 Questions or comments concerning data holdings referenced in this report may be directed to: John Faundeen Archivist U.S. Geological Survey EROS Center 47914 252nd Street Sioux Falls, SD 57198 USA Tel: (605) 594-6092 E-mail: [email protected] NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 FILM SOURCE Date Range Frames Declassification I CORONA (KH-1, KH-2, KH-3, KH-4, KH-4A, KH-4B) Jul-60 May-72 907,788 ARGON (KH-5) May-62 Aug-64 36,887 LANYARD (KH-6) Jul-60 Aug-63 908 Total Declass I 945,583 Declassification II KH-7 Jul-63 Jun-67 17,814 KH-9 Mar-73 Oct-80 29,140 Total Declass II 46,954 Declassification III HEXAGON (KH-9) Jun-71 Oct-84 40,638 Total Declass III 40,638 Large Format Camera Large Format Camera Oct-84 Oct-84 2,139 Total Large Format Camera 2,139 Landsat MSS Landsat MSS 70-mm Jul-72 Sep-78 1,342,187 Landsat MSS 9-inch Mar-78 Oct-92 1,338,195 Total Landsat MSS 2,680,382 Landsat TM Landsat TM 9-inch Aug-82 May-88 175,665 Total Landsat TM 175,665 Landsat RBV Landsat RBV 70-mm Jul-72 Mar-83 138,168 Total Landsat RBV 138,168 Gemini Gemini Jun-65 Nov-66 2,447 Total Gemini 2,447 Skylab Skylab May-73 Feb-74 50,486 Total Skylab 50,486 TOTAL FILM SOURCE 4,082,462 NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 DIGITAL SOURCE Scenes Total Size (bytes)
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Aqua: an Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 2, FEBRUARY 2003 173 Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L. Parkinson Abstract—Aqua is a major satellite mission of the Earth Observing System (EOS), an international program centered at the U.S. National Aeronautics and Space Administration (NASA). The Aqua satellite carries six distinct earth-observing instruments to measure numerous aspects of earth’s atmosphere, land, oceans, biosphere, and cryosphere, with a concentration on water in the earth system. Launched on May 4, 2002, the satellite is in a sun-synchronous orbit at an altitude of 705 km, with a track that takes it north across the equator at 1:30 P.M. and south across the equator at 1:30 A.M. All of its earth-observing instruments are operating, and all have the ability to obtain global measurements within two days. The Aqua data will be archived and available to the research community through four Distributed Active Archive Centers (DAACs). Index Terms—Aqua, Earth Observing System (EOS), remote sensing, satellites, water cycle. I. INTRODUCTION AUNCHED IN THE early morning hours of May 4, 2002, L Aqua is a major satellite mission of the Earth Observing System (EOS), an international program for satellite observa- tions of earth, centered at the National Aeronautics and Space Administration (NASA) [1], [2]. Aqua is the second of the large satellite observatories of the EOS program, essentially a sister satellite to Terra [3], the first of the large EOS observatories, launched in December 1999. Following the phraseology of Y.
    [Show full text]
  • Radar Ortho Suite
    Technical Specifications Radar Ortho Suite The Radar Ortho Suite includes rigorous and rational function models developed to compensate for distortions and produce orthorectified radar images. Distortions caused by the platform (position, velocity, and orientation), the sensor (orientation, integration time, and field of view) the Earth (geoid, ellipsoid, and relief), and the projection (ellipsoid and cartographic) are all taken into account using these models. The models reflect the physical reality of the complete viewing geometry and correct all distortions generated during the image formation. Module Prerequisites The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite. Supported Radar Formats The Radar Ortho Suite supports the following radar sensors. • ASAR o ASAR 1B format • COSMO-SkyMed o Level 0 (RAW) o Level 1A (SCS) o Level 1B (DGM) • ERS 1/2(CEOS) o ERS CD provides different levels of processing. We recommend the georeferenced level for images produced in Canada and the PRI level produced by ESA. • Gaofen-3 (GF3) o Level 1A SLC data with an associated RPC model for the following observation modes: . Spotlight [SL] . Ultra-fine stripmap [UFS] . Fine stripmap [FSI] . Wide fine stripmap [FSII] . Quad-pol stripmap [QPSI] . Wide quad-pol stripmap [QPSII] . Wave [WAV] • Huanjing (HJ-1C) o 1C Level 2 format • JERS1 (LGSOWG) o JERS-1 CD provides different levels of processing. We recommend that you use a georeferenced level or equivalent for highest accuracy. OrthoEngine only works for descending order images. • KOMPSAT-5 o L1A SCS_U: Single Look Complex Slant Un-balanced o L1A SCS_B: Single Look Complex Slant Balanced o L1B DSM_U: Detected, Slant Range, Multilook Un-equalized o L1B DSM_U: Detected, Slant Range, Multilook o L1B DGM_B: Detected, Ground projected, Multilook Balanced The information in this document is subject to change without notice and should not be construed as a commitment by PCI Geomatics.
    [Show full text]
  • Launch / Tracking and Control Plan of Advanced Land Observing Satellite (ALOS) / H-IIA Launch Vehicle No
    Launch / Tracking and Control Plan of Advanced Land Observing Satellite (ALOS) / H-IIA Launch Vehicle No. 8 (H-IIA F8) November 2005 Japan Aerospace Exploration Agency (JAXA) (Independent Administrative Agency) - 1 - Table of Contents Page 1. Overview of the Launch / Tracking and Control Plan 1 1.1 Organization in Charge of Launch / Tracking and Control 1 1.2 Person in Charge of Launch / Tracking and Control Operations 1 1.3 Objectives of Launch / Tracking and Control 1 1.4 Payload and Launch Vehicle 1 1.5 Launch Window (Day and Time) 2 1.6 Facilities for Launch / Tracking and Control 2 2. Launch Plan 3 2.1 Launch Site 3 2.2 Launch Organization 4 2.3 Launch Vehicle Flight Plan 5 2.4 Major Characteristics of the Launch Vehicle 5 2.5 Outline of the Advanced Land Observing Satellite (ALOS) 5 2.6 Securing Launch Safety 5 2.7 Correspondence Method of Launch information to Parties Concerned 6 3. Tracking and Control Plan 8 3.1 Tracking and Control Plan of the ALOS 8 3.1.1 Tracking and Control Sites 8 3.1.2 Tracking and Control Organization 8 3.1.3 Tracking and Control Period 8 3.1.4 Tracking and Control Operations 10 3.1.5 ALOS Flight Plan 10 3.1.6 Tracking and Control System 10 4. Launch Result Report 11 [List of Tables] Table-1: Launch Vehicle Flight Plan 13 Table-2: Major Characteristics of the Launch Vehicle 15 Table-3: Major Characteristics of the ALOS 17 Table-4: Tracking and Control Plan (Stations) of the ALOS 23 [List of Figures] Figure-1: Map of Launch / Tracking and Control Facilities 12 Figure-2: Launch Vehicle Flight Trajectory 14 Figure-3: Configuration of the Launch Vehicle 16 Figure-4: On-orbit Configuration of the ALOS 20 Figure-5: Access Control Areas for Launch 21 Figure-6: Impact Areas of the Launch Vehicle 22 Figure-7: ALOS Flight Plan 24 Figure-8: ALOS Footprint 25 Figure-9: ALOS Tracking and Control System 26 - 2 - 1.
    [Show full text]
  • Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges
    UN-GGIM Exchange Forum Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges Paulo Bezerra Managing Director MDA Geospatial Services Inc. paulo@mdacorporation . com RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF PROPRIETARY INFORMATION This document contains information proprietary to MacDonald, Dettwiler and Associates Ltd., to its subsidiaries, or to a third party to which MacDonald, Dettwiler and Associates Ltd. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other thanUse, the duplication,specific pur orpose disclosure for which of this it wasdocument disclosed or any is ofexpressly the information prohibited, contained except herein as MacDonald, is subject to theDettwiler restrictions and Assoon thciatese title page Ltd. ofmay this agr document.ee to in writing. 1 MDA Geospatial Services Inc. (GSI) Providing Essential Geospatial Products and Services to a global base of customers. SATELLITE DATA DISTRIBUTION DERIVED INFORMATION SERVICES Copyright © MDA ISI GeoCover Regional Mosaic. Generated Top Image - Copyright © 2002 DigitialGlobe from LANDSAT™ data. Bottom Image - RADARSAT-1 Data © CSA (()2001). Received by the Canada Centre for Remote Sensing. Processed and distributed by MDA Geospatial Services Inc. Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document. MDA GSI - Satellite Data Distribution Worldwide distributor of radar and optical satellite data RADARSAT-2 GeoEye WorldView RapidEye USA Canada Brazil Chile RADARSAT-2 Data and Products © MACDONALD DETTWILER AND Copyright © 2011 GeoEye ASSOCIATES LTD.
    [Show full text]