Theoretical status of the muon g 2 − Andreas Nyffeler PRISMA Cluster of Excellence, Institut f¨urKernphysik, Helmholtz-Institut Mainz Johannes Gutenberg Universit¨atMainz, Germany
[email protected] KEK, Tsukuba, Japan, December 1, 2016 Outline Basics of the anomalous magnetic moment • Electron g 2, determination of α • − Muon g 2: QED, weak interactions, hadronic contributions • − Hadronic vacuum polarization (HVP) • Hadronic light-by-light scattering (HLbL) • A data-driven approach to HLbL using dispersion relations • Precision of a data-driven approach to HLbL: pseudoscalar-pole • contribution New Physics contributions to the muon g 2 • − Conclusions and Outlook • Basics of the anomalous magnetic moment Electrostatic properties of charged particles: Charge Q, Magnetic moment ~µ, Electric dipole moment ~d For a spin 1/2 particle: e 1 ~µ = g ~s; g = 2(1 + a); a = (g 2) : anomalous magnetic moment 2m | {z } 2 − Dirac Long interplay between experiment and theory: structure of fundamental forces In Quantum Field Theory (with C,P invariance): γ(k) 2 3 iσµν k 0 µ 2 ν 2 =( ie)¯u(p ) 6γ F (k ) + F (k )7 u(p) 1 2 4 5 − 2m | {z } | {z } p p’ Dirac Pauli F1(0) = 1 and F2(0) = a 2 ae : Test of QED. Most precise determination of α = e =4π. aµ: Less precisely measured than ae , but all sectors of Standard Model (SM), i.e. QED, Weak and QCD (hadronic), contribute significantly. Sensitive to possible contributions from New Physics. Often (but not always !): 2 2 m` mµ a` 43000 more sensitive than ae [exp. precision factor 19] ∼ mNP ) me ∼ ! Anomalous magnetic moment in quantum field theory Quantized spin 1=2 particle interacting with external, classical electromagnetic field 4 form factors in vertex function (momentum transfer k = p0 p, not assuming parity or charge conjugation invariance) − i p0; s0 jµ(0) p; s ≡ h j j i " µν 0 0 µ 2 iσ kν 2 = ( ie)¯u(p ; s ) γ F1(k ) + F2(k ) − | {z } 2m | {z } γ(k) Dirac Pauli # σµν k 5 ν 2 5 2 µ µ 2 + F (k ) + k k k F (k ) u(p s) γ 3 γ γ = 4 ; 2m − p p’ µ 2 k= = γ kµ.