People and Things
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERN Courier–Digital Edition
CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www. -
ISABELLE DESIGN Studyk
© 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. ISABELLE DESIGN STUDYk F. E. Mills Brookhaven National Laboratory Upton, New York Introduction Intersection Regions Following the 1970 BNL Summer Study on AGS Utili- The philosophy of design of the intersection re- zation, John Blewett and I began to consider the design gions is to remove the momentum dispersion, allow the of colliding beam systems in the center of mass energy beam to spread in size, to pass it through a strong range from 200 GeV to 2000 GeV, since it seemed to us lens and bring it to a small focus at the intersection then that significant new phenomena could be expected region (low p). The process is then reversed to return in nuclear interactions in that energy range. We took it to the normal lattice. In some cases (elastic as initial conditions, that we would employ the emer- scattering), the beam is kept large, to obtain good gent technology of superconducting magnets, and that angular resolution. What we have done is to design a we would employ the AGS as the injector, hence requir- "catalog" of intersecting regions, in cooperation with ing the acceleration of the full stored beam to final experimentalists, to fit the needs of particular exper- energies in the storage device. In the summer of 1971, iments. -
A Pp and E+E- Collider in a 100Km Ring at Fermilab
A pp and e+e- collider in a 100km ring at Fermilab Tanaji Sen In collaboration with C.M.Bhat, P.C. Bhat, W. Chou, E. Gianfelice-Wendt, J. Lykken, M.K. Medina, G.L. Sabbi, R. Talman 5th TLEP Workshop July 25-26, 2013 Fermilab Outline Motivation • Snowmass study • TLEP design study in a 80 km ring • Past studies of VLHC and VLLC in a 233 km ring in 2001 • Now a “more modest” ring of circumference = 100 km • Design of a pp collider with 100 TeV CM energy • Design of an e+e- collider with 240-350 GeV CM energy • No discussion of - Cost - Politics of acquiring 100 km of real estate T. Sen pp and e+e- colliders 2 Hadron Colliders - Wikipedia Hadron colliders Intersecting Storage Rings CERN, 1971–1984 Super Proton Synchrotron CERN, 1981–1984 ISABELLE BNL, cancelled in 1983 Tevatron Fermilab, 1987–2011 Relativistic Heavy Ion Collider BNL, 2000–present Superconducting Super Collider Cancelled in 1993 Large Hadron Collider CERN, 2009–present High Luminosity Large Hadron Proposed, CERN, 2020– Collider Very Large Hadron Collider Theoretical T. Sen pp and e+e- colliders 3 Hadron Colliders ISR SPS Tevatron RHIC (pp) LHC (2012) Circumference [km] 0.94 6.9 6.3 3.8 26.7 Energy [GeV] 31 315 980 255 4000 Number of bunches dc 6 36 107 1380 Bunch spacing [ns] - 1150 396 108 50 Bunch intensity [x1011 ] - 2.75 (3.1/1 ) 2.0 1.7 Particles/beam [x 1014] 9.8 7.8/4.2 112/36 143 3089 Trans. rms Emitt [ μm] 1.5/0.15 (3/1.5) 3.3 2.5 Beam-beam tune shift 0.0035x8 0.005x3 0.013x2 0.007x2 0.01x2 Luminosity [x1032 cm-2s-1] 1.3 0.06 4.0 2.3 77 # of events/crossing 12 37 Stored beam energy [MJ] 0.005 0.04 1.75/0.57 0.57 140 T. -
SCOPE of the WORKSHOP D. Cline Fermi National
SCOPE OF THE WORKSHOP D. Cline Fermi National Accelerator Laboratory and University of Wisconsin at Madison A Workshop was held during the week of March 1. The very interesting talk of R. Feynman on 27-31 at the Lawrence Berkeley Laboratory in ultra high energy interactions (Ua) and the historical Berkeley, California. The purpose of the Workshop surveys of beam cooling by A. Sessler and was to discuss various beam-cooling techniques and to R. R. Wilson. investigate the possibility of constructing high luminosity proton-antiproton storage rings. 2. The general conviction that pp machines pro Herman Grunder and other members of the LBL staff posed in the present CERN and Fermilab schemes are were largely responsible for the efficient operation of sound (UIc, d; IVc; Vb). the Workshop and the success. The Workshop was jointly sponsored by Fermilab and LBL. 3. The discussion of the cooling of high energy That this was the first workshop totally devoted proton-antiproton beams by electrons (Rubbia, Month, to beam cooling and to high luminosity pp storage rings Ruggiero) or by synchrotron radiation (Wilson). The indicates the close coupling between the two subjects. report of Ruggiero, Vh, was completed after the The construction of pp storage rings is an old dream Workshop and is reproduced here for completeness. of accelerator physicists, the practical realization of these machines certainly relies on beam-cooling tech 4. The understanding of improvements in target niques. The late G. Budker often discussed the possi efficiency that can raise the p yield by a considerable bility of pp storage rings and realized that beam factor (IVd). -
Jan/Feb 2015
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 5 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 5 CERN Courier – digital edition Welcome to the digital edition of the January/February 2015 issue of CERN Courier. CMS and the The coming year at CERN will see the restart of the LHC for Run 2. As the meticulous preparations for running the machine at a new high energy near their end on all fronts, the LHC experiment collaborations continue LHC Run 1 legacy to glean as much new knowledge as possible from the Run 1 data. Other labs are also working towards a bright future, for example at TRIUMF in Canada, where a new flagship facility for research with rare isotopes is taking shape. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. TRIUMF TRIBUTE CERN & Canada’s new Emilio Picasso and research facility his enthusiasm SOCIETY EDITOR: CHRISTINE SUTTON, CERN for rare isotopes for physics The thinking behind DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p26 p19 a new foundation p50 CERNCOURIER www. V OLUME 5 5 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 5 CERN Courier January/February 2015 Contents 4 COMPLETE SOLUTIONS Covering current developments in high-energy Which do you want to engage? physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel. -
Deliberation Document on the 2020 Update European Strategy
DELIBERATION DOCUMENT ON THE 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS The European Strategy Group _Preface The first European Strategy for Particle Physics (hereinafter referred to as “the Strategy”), consisting of seventeen Strategy statements, was adopted by the CERN Council at its special session in Lisbon in July 2006. A first update of the Strategy was adopted by the CERN Council at its special session in Brussels in May 2013. This second update of the Strategy was formulated by the European Strategy Group (ESG) (Annex 1) during its six-day meeting in Bad Honnef in January 2020. The resolution on the 2020 Update of the European Strategy for Particle Physics was adopted at the 199th Session of the CERN Council on 19 June 2020. The ESG was assisted by the Physics Preparatory Group (Annex 2), which had provided scientific input based on the material presented at a four-day Open Symposium held in Granada in May 2019, and on documents submitted by the community worldwide. In addition, six working groups (Annex 3) were set up within the ESG to address the following points: Social and career aspects for the next generation; Issues related to Global Projects hosted by CERN or funded through CERN outside Europe; Relations with other groups and organisations; Knowledge and Technology Transfer; Public engagement, Education and Communication; Sustainability and Environmental impact. Their conclusions were discussed at the Bad Honnef meeting. This Deliberation Document was prepared by the Strategy Secretariat. It provides background information underpinning the Strategy statements. Recommendations to the CERN Council made by the Working Groups for possible modifications to certain organisational matters are also given. -
Toward the Limits of Matter: Ultra-Relativistic Nuclear Collisions at CERN
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-OPEN-To be specified 21 May 2015 Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN Abstract Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transi- tion, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create ”fireballs” of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra- relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program. Jurgen¨ Schukraft PH Division, CERN, CH-1211 Geneva 23, Switzerland Reinhard Stock Institute of Nuclear Physics, and FIAS, Max von Laue Strasse 1, D-60438 Frankfurt/Main, Germany arXiv:1505.06853v1 [nucl-ex] 26 May 2015 To appear in “60 Years of CERN Experiments and Discoveries”, Editors H. Schopper and L. di Lella, World Scientific Publishing, Singapore, 2015 Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN 1 1 Strongly interacting matter We recall here the development of a novel research field at CERN, devoted to the phases and phase structure of matter governed by the strong fundamental force. Its proper field theory was discovered around 1970: Quantum Chromodynamics (QCD) addresses the fundamental interactions of elementary quarks, as mediated by gluons. -
James W. Rohlf Feb
James W. Rohlf Feb. 2017 Contact Boston University Physics Dept., 590 Commonwealth Ave., Boston, MA 02215, phone 617-353-2600, mobile 617-543-7455, Skype 617-275-3636, CERN +41754112573 email [email protected] Education Ph.D. in Physics 1980 Caltech, ”Investigations of Hadron Jets,” published in Nucl. Phys. B171 (1980) p. 1-37, Committee: G. C. Fox (advisor), C. Barnes, R. P. Feynman, R. Gomez M.S. in Physics 1975 University California, Los Angeles B.A. Physics and B.S. Mathematics 1973 University of Minnesota Employment Professor of Physics, Boston University, 1988 - present Associate Professor of Physics, Harvard University, 1985-8 Assistant Professor of Physics, Harvard University, 1981-5 (concurrent with Cornell and CERN) Scientific Associate (paid), European Center for Nuclear Research (CERN), 1982-4 Visiting Fellow, Laboratory of Nuclear Studies, Cornell University, 1980-2 Research Associate, Harvard University, 1980-1 Research Associate, California Institute of Technology, 1979-80 Current research Physics with the Compact Muon Solenoid (CMS) detector at the CERN LHC. First data col- lected in Dec. 2009. First physics paper published in Feb. 2010. Design and construction of the data concentrator (DCC and DCC2) to read out the CMS hadron calorimeter (HCAL) and other associated electronics ($5 M equipment money). Development of silicon photomultipliers (SiPM) and micro-CTA electronics (AMC13) for trigger, clock, and data acquisition in CMS. Led effort to establish source calibration procedure for calorimeter. Supervision of postdocs and and gradu- ate students. Work closely with the senior engineers at the Boston University Electronics Design Facility. Operations and detctor upgrades funded by US Department of Energy. -
RCED-91-116 Federal Research: Status of DOE's Superconducting
._ * United States General Accounting Office -,_ Report to the Chairman, Committee on GAO the Budget, U.S. Senate April 1991 FEDERAL RESEARCH Status of DOE’s Superconducting Super Collider GAO,‘RCED-91-116 United States General Accounting Office GAO Washington, D.C. 20548 Resources, Community, and Economic Development Division B-227295.8 April 151991 The Honorable Jim Sasser Chairman, Committee on the Budget United States Senate Dear Mr. Chairman: In response to your March 7,1990, request we reviewed the status of the Department of Energy’s (DOE) Superconducting Super Collider (ssc), which will be located 30 miles south of Dallas, Texas. The ssc will be the world’s largest high energy particle accelerator-a research tool used by physicists to seek fundamental knowledge about energy and matter. DOE recently estimated that the ssc will cost $8.2 billion (in current-year dol- lars).’ You expressed concern that once the project progressed beyond the design phase, other problems could lead to further cost increases. As agreed with your office, this report provides information on the insta- bility in tenure of DOE and ssc Laboratory project management, uncer- tainties related to the ssc site geology, uncertainties and risks with magnet development and production, and Texas’ proposed contribution to the project’s costs. Both the ssc Laboratory and DOE’S ssc program office have experienced Results in Brief management instability because acting directors that have occupied key positions have frequently changed. In general, instability in key leader- ship positions can result in frequent changes of direction, diminished accountability, and little long-term operational planning. -
Proton-Proton Colliding Beam Facility ISABELLE
XI Intern, Conf» on High Energy Accelerators, Geneva, Switzerland, July 7-11, 1980= BNL 28019 H. Hahn' Brookhaven National Laboratory, Upcon, New York, 11973, USA. ABSTRACT This paper attetnpeo Co present. Che status of Che ISABELLE conotructioa project, uhich has Che objeccive of building a 400 * 600 GGV proton colliding beam facility. The major technical features of cho auperconduccing accelerators with their projected performance are described. Progress made so far, difficuleieo encountered, and Che program until completion ia 1986 is briefly reviewed. INTRODUCTION About one month ago Brookhaveu Nacional Laboratory celebraced the 20th anniversary of Che Alternating Gradient Synchrocon. This venerable accelerator has been Che instrument by which many significant discoveries were made. In order to continue its role as high energy physics center, studies for a proton—proton colliding beam facilicy were actively pursued at Broolthaven since Che early 1970's. ISABELLE, as this Intersecting Storage Accelerator wao baptized, made ics debut at the 8th International Conference on High Energy Accelerators here in Geneva in 1971^. The story goes chat Che AGS cons truce ion wao approved by the US Atonic Energy Commission six days afcer reception of Broolthaven • s leccer. This time it cook more then six years and Che writing of six design studieo^' before Che new accelerator Has recognized by authorizing Construction Planning 4 Design funds for Fiscal Year 1976 and 1977. Preliminary design was approved in Fi' 7(i and authorisation for construction followed then without further delay in FY 793). Froa its inception, ISABELLE was intended to serve as a major high energy facility which implied the following design criteria. -
UNESCO Coupons
value of the self-diffusion coefficient of SI, needed to arrange the arriving atoms on proper lattice sites. Linear extrapolation of this border line to higher temperatures yields an intersection point with the LCVD curve at about 1520 K. This value Is In good agreement with the temperature limit we find for single-crystal growth of rods. The orientation of the rod axis was found to be close to either <100> or < 110> crystal lographic directions. Conclusion Laser Induced deposition from the gas phase allows single-step production of material patterns with lateral dimensions from 0.5 µm to several mm. Typical deposi tion rates in laser pyrolysis are 10 to 100 Underlining the international character of CERN, both organisational and physical, the µm/s compared to 10 to some 100 A/s In start of construction of LEP — the 130-130 GeV electron-positron storage rings — was laser photolysis. The scanning velocities formally inaugurated by the Presidents of both France and Switzerland on 13 September. possible in laser pyrolysis reach at least up In the photograph taken at the ground-breaking ceremony are to the left of Francois to about 500 µm/s for strongly adherent Mitterand of France, Emilio Picasso, Director of the LEP Project and to the right of Pierre films. Laser pyrolysis at visible wavelengths Aubert of Switzerland, Herwig Schopper, the Director-General of CERN. The 27 km combines high deposition rates and small circumference of LEP will lie 3/4 in France and 1/4 in Switzerland. lateral dimensions of deposits with stan dard laser techniques, simple optics and adjustment. -
Gustav Kramer Fest Ahmed Ali, DESY
Gustav Kramer Fest Ahmed Ali, DESY 1 Gustav Kramer Fest Heavy Quark Physics with Gustav Kramer From Quark Models to SCET 2 Gustav Kramer Fest First Meeting with Gustav Kramer ● I first met Gustav Kramer in May 1972 at the CERN School of Physics, held in Grado, Italy. 1972 CERN School of Physics, Grado, Italy, 15-31 May 1972 3 Gustav Kramer Fest First Meeting with Gustav Kramer ● This was the first time that I attended an International School on Particle Physics. Emilio Picasso was the Director of the CERN School. Among the theorists who lectured were Murray Gell-Mann, Kurt Gottfried, Michel Gourdin, Chan Hong-Mo, Gustav Kramer and Roger Phillip. Gustav Kramer Grado 4 Gustav Kramer Fest First Meeting with Gustav Kramer ● Gustav Kramer gave a lecture_ course on ªElectron-Positron Interactionsº; this was the time when e + e colliders started to make their mark on particle physics, with the A.C.O. in Orsay, VEPP II in Novosibirsk, ADONE in Frascati, SPEAR at SLAC, and the Bypass Ring at CEA, all operating, with DORIS at DESY under construction. ● In his Introduction, he stated: ªThis field of high energy physics has been very interesting in the past, we can expect further interesting results in the futureº. 5 Gustav Kramer Fest Page 1 of Gustav Kramer©s Grado Lecture 6 Gustav Kramer Fest Figure from Gustav Kramer©s Grado Lecture Pion form factor with ρ- ω mixing measured at Orsay 7 Gustav Kramer Fest First Meeting with Gustav Kramer ● As a fresh postdoc, looking for the next position, I thought that with the start of DORIS, DESY would be a great place to go and work.