Biomass and Agriculture D L C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
40 Eece Mp.Eia Ic 2017 6 E.Pdf
United Nations ECE/MP.EIA/IC/2017/6 Economic and Social Council Distr.: General 31 January 2018 Original: English Economic Commission for Europe Meeting of the Parties to the Convention on Environmental Impact Assessment in a Transboundary Context Meeting of the Parties to the Convention on Environmental Impact Assessment in a Transboundary Context serving as the Meeting of the Parties to the Protocol on Strategic Environmental Assessment Implementation Committee Fortieth session Geneva, 5–7 December 2017 Report of the Implementation Committee on its fortieth session Contents Page I. Introduction ...................................................................................................................................... 3 A. Attendance ............................................................................................................................... 3 B. Organizational matters ............................................................................................................. 3 II. Follow-up to decision VI/2 .............................................................................................................. 4 A. Armenia (EIA/IC/CI/1) ............................................................................................................ 5 B. Azerbaijan (EIA/IC/CI/2) ........................................................................................................ 5 C. Bystroe Canal Project (EIA/IC/S/1)........................................................................................ -
Luxembourg December 2015
Luxembourg December 2015 The EurObserv’ER project The EurObserv’ER Barometers monitor the renewable energy progress in each Member State of the European Union. Every two months a barometer dedicated to one particular renewable energy technology is published. Moreover, once a year an Overview Barometer collects the main indicators published during the year and completes these with additional renewable sectors which have not been detailed in the individual Barometers. Finally, the Overview Barometer also reports on socio- economic aspects: employment and turnover in the field of renewables, and the renewable energy investment climate. The country policy reports monitor policy developments by providing an overview of policy changes compared to the Member State Progress Reports (updated until December 2015). All Barometers are available for download at http://www.eurobserv-er.org. An overview of direct links to Barometers is available in the Annex. New Barometer releases are announced on Twitter (https://twitter.com/eurobserv_er). The EurObserv’ER barometer is a project supported by the European Commission within the DG Energy “Intelligent Energy Europe” programme. It is also supported by Ademe, the French Environment and Energy management Agency, and Caisse des Dépôts. The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein. 2 Abstract In Luxembourg, electricity from renewable sources is mainly promoted through a feed-in tariff as well as through subsidies. Private individuals operating small solar installations are entitled to tax benefits. -
Annual Report 2020 Encevo
Annual Report Encevo S.A. We embrace energy transition GRI 102-16 Our vision We envision Encevo as leading and sustainable energy player in the Greater Region. In the rapidly changing energy landscape, we will ensure a secure access and competitive supply of energy, and actively shape the transition to a sustainable energy sector by embracing technology, deploying innovative solutions and partnering with local communities. Encevo people are empowered and strive for excellence. We mobilise all our forces to bring the energy of tomorrow to our customers. Encevo S.A. Registered as a société anonyme (public limited company) under Luxembourg law with a capital of EUR 90,962,900 (31.12.2020). Registered office: Esch-sur-Alzette Luxembourg Trade and Companies’ Register B11723. Annual General Meeting of 11th May 2021. Index 6 Interview: Claude Seywert & Marco Hoffmann 10 Group Structure 12 Management Reflections 20 Key Figures: Activity at a Glance 27 Encevo Sustainability Context and Management Approach 32 Stakeholder Engagement 41 Business Integrity: General Compliance 49 Indirect and Direct Economic Impacts 54 Product Impact 59 Employee Well-being 70 Resource Efficiency 74 About the Report 80 Governance Details 82 Management Report 92 Consolidated Annual Accounts 134 Extract of the Annual Accounts of Encevo S.A. Claude Seywert CEO Encevo S.A. Chairman of the Executive Committee Marco Hoffmann Chairman of the Board of Directors GRI 102-14 Staying the course towards a sustainable energy transition In a year largely marked by the crisis caused by the pandemic, Encevo Group maintained its operational excellence. The group and its entities stayed the course towards a sustainable energy transition. -
Geothermal Development in Hungary Country Update Report 2000–2002
GEOTHERMAL DEVELOPMENT IN HUNGARY COUNTRY UPDATE REPORT 2000–2002 Miklós Árpási Hungarian Geothermal Association Lupény u. 3/B. H-1026, Budapest, Hungary ABSTRACT Information is provided on the status of the geothermal energy utilization – direct use – in Hungary with emphasis on developments between 2000–2002. Level of utilization of geothermal energy in the World has been increased in this period. Geothermal energy was the leading producer with 70% of the total electricity production of the renewables energy sources (wind. solar, geothermal and tidal) followed by wind energy with 28% of the electricity production. The current cost in USD¢/kWh of direct heat use from biomass is 1–5, geothermal 0,5–5 and solar heating 3–20. The parameters of direct use in Hungary were decreased in this period and the proportion of geothermal energy utilization in the energy balance of Hungary, despite the significance proven dynamic reserves (with reinjection) of 380 Mm3/a with heat content of 63,5 PJ/a at ∆T = 40 oC is remained very low (0,25%). The utilization of the geothermal energy only for direct use, despite of the possibility of production of geothermal fluids with surface temperature higher than 100oC, no electricity has been generated. Geothermal energy utilization for direct use is estimated to 324,5 MWt of geothermal capacity and to currently supply 2804 TJ/a of utilized heat energy through direct application in Hungary, by December 31, 2002. Geothermal heat pumps represent about 4,0 MWt of installed capacity. The quantity of produced thermal water for direct use in year 2002 was approximately 15.0 million cu.m. -
Sustainable Politics for the Use of Biomass CSDD Statement, 25Th
Sustainable Politics for the Use of Biomass CSDD statement, 25th February 2008 1 Sustainable Politics for the Use of Biomass On 3 August 2007 the Minister for the environment requested a statement from the High Council for Sustainable Development (Conseil supérieur pour le Développement durable, CSDD) on the topic of biomass production and utilization. It was the opinion of the government that the following considerations should be a priority: The implementation of a sustainable development poses two key challenges for Luxembourg: • To combat climate change and • To reduce dependency in the field of energy supply In this context, the increased use of cultivation biomass from agriculture and forestry holds prospects as well as risks. On the one hand, the use of biomass for the production of electricity, heat and bio-fuels creates competition with the food production and, on the other hand, the perhaps more intensive cultivation of the arable lands and forest areas poses a threat to nature and the environment. Definition of Biomass In Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market, the term ‘biomass’ is defined as “the biologically degradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), forestry and related industries, as well as the biologically degradable fraction of industrial and municipal waste.” Thus, biomass encompasses all food and raw materials from agriculture and forestry as well as their waste. Going by this definition, the CSDD cast a critical look at the possible effects of the cultivation of biomass and its utilization in Luxembourg. -
An Ambitious Recovery Plan for a Green Recovery and Development of Renewable Energies in Luxembourg and in Europe
01.02.2021 EUFORES Webinar - Renewable Energy in Luxembourg An Ambitious Recovery Plan for a Green Recovery and Development of Renewable Energies in Luxembourg and in Europe Claude Turmes - Minister for Energy National energy and climate plan Ambitious targets for 2030 Reduce energy consumption Improve energy efficiency from 32 to 40 - 44% Reduce climate gases Reduce CO2 emissions from -40% to-55% Expansion of renewable energies Increase the share of renewable energies From 11% to 25% CO2 emissions per sectors 8% 7% 6% Transport Households Industry (excl. ETS) 12% Tertiary 67% Agriculture Climate solutions Energy efficiency first (40%-44% in 2030) • In building • Strictest efficiency norms in EU for new buildings • Renovation strategy • In industry • In transport Climate solutions Fast build-up of renewables (25% in 2030) • Solar • Wind • Sustainable biomass (origin: greater region) • International cooperation (offshore wind, solar, …) Quelle: ILR – ÉVOLUTION DES MARCHÉS DE L’ÉLÉCTRICITÉ ET DU GAZ NATUREL Quelle: ILR Climate solutions Mobility • Expansion of public transport • Expansion of infrastructure for soft mobility • Free public transport = less cars • Car sharing • E-mobility Charge at work Charge at home SuperChargy Chargy Charge at home Climate solutions Circular economy (wooden construction) Research and Innovation • Luxembourg as test-bed and hub for climate solution businesses • Buildings of the future (plus energy, healthy, circular) • Eco-Quartier made in Luxembourg • Integration of renewables and e-mobility into grid • -
Enerdata Renewable Energy Support Policies in Europe
Renewable Energy Support Policies Renewable Energy Support Policies in Europe September 2020 2 Enerdata Renewable Energy Support Policies in Europe Table of contents Table of contents 2 List of figures 7 List of tables 8 Definitions 12 Acronyms 15 Overview 16 Main changes since the last version 19 Austria 19 Croatia 19 Czechia 19 Estonia 19 Greece 19 Hungary 19 Italy 19 Ireland 19 Lithuania 20 Luxembourg 20 Netherlands 20 Poland 20 Portugal 20 Romania 20 Slovakia 20 Spain 20 Ukraine 21 United Kingdom 21 Austria 22 Policies overview 22 Feed-in Tariffs 22 Combined Heat and Power (CHP) 24 Investment grants 24 Biofuels 24 Belgium 25 Policies overview 25 Renewable Obligations 25 Premium 28 Investment grants 29 Net metering 29 Bulgaria 30 Policies overview 30 Feed-in Tariffs 30 Biofuels 31 Croatia 32 Enerdata 2 Policies overview 32 Feed-in Tariffs 32 Biofuels 33 Cyprus 34 Policies overview 34 Net metering 34 Investment grants 34 Feed-in Tariffs 34 Biofuels 35 Czechia 36 Policies overview 36 Feed-in Tariffs/Premiums 36 Investment grants 36 Biofuels 37 Denmark 38 Policies overview 38 Premiums 38 Net metering 40 Biofuels 40 Estonia 41 Policies overview 41 Premiums 41 Investment grants 42 Finland 43 Policies overview 43 Premiums 43 France 45 Policies overview 45 Feed-in Tariffs 45 Combined Heat and Power (CHP) 48 Biofuels 48 Germany 49 Policies overview 49 Feed-in Tariffs 49 Biofuels 52 Greece 53 Policies overview 53 Feed-in Tariffs 53 Net Metering 56 Hungary 57 Renewable Energy Support Policies in Europe - Copyright© Enerdata – All rights reserved -
Bewaree Country Reports Europe Part 2
BewareE Country Reports Europe 20080923 part 2 Page 1 of 185 BewareE Energy Services: Reducing the Energy Consumption of Residents by Behavioural Changes Document: BewareE Country Reports Europe 20080923 part 2.doc Dr. Michael Scharp (ed. 2008): Energy Services – European Country Reports. Berlin: IZT Funded by EACI Executive Agency for Competitiveness and Innovation EIE/07/242/SI2.467624 - BewareE Runtime: December 2007 to June 2010 Disclaimer: The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Contact Institute for Futures Studies and Technology Assessment gGmbH Dr. Michael Scharp Schopenhauerstraße 26 14129 Berlin [email protected] Tel. 030-80 30 88 14 Berlin, May 2008 BewareE BewareE Country Reports Europe 20080923 part 228.doc Page 2 of 185 1 Content 1 Content .................................................................................................................................. 2 2 Introduction .......................................................................................................................... 3 3 Energy Services in Italy (4) ................................................................................................. 5 4 Energy Services in Latvia (3) ............................................................................................ 17 5 Energy Services in Lithuania (3) ..................................................................................... -
Alternative and Sustainable Energy Scenarios for Hungary
Summary Report | Wuppertal, June 2016 Alternative and Sustainable Energy Scenarios for Hungary for Greens / EFA Group – European Parliament Authors Wuppertal Institute: Prof. Dr. Stefan Lechtenböhmer Magdolna Prantner Clemens Schneider Authors Energiaklub: Orsolya Fülöp Fanni Sáfián With support from: Dr. Karin Arnold Benjamin Best Mathis Buddeke Frank Merten Willington Ortiz Ole Soukup Alternative and Sustainable Energy Scenarios for Hungary June 2016 Table of contents Table of contents 2 1 Introduction 3 2 Modelling of future energy systems 5 2.1 WISEE energy system simulation model 5 2.2 EnergyPLAN 7 3 Scenarios 8 3.1 Assumptions of the NUCLEAR scenario 8 3.2 Assumptions of the Green scenario 8 3.3 Assumptions of the INTER scenarios 9 4 Available technical RES potentials until 2050 10 4.1 Wind 11 4.2 Solar photovoltaic 11 4.3 Biomass 12 5 Comparison of the scenarios 13 5.1 Power generation 13 5.2 Energy efficiency 15 5.3 Renewable energy 16 5.3.1 Shares in TPES and electricity generation 17 5.3.2 Electricity export – import balance 18 5.4 Energy related CO2 emissions 21 5.5 Cost effects of the electricity production in various scenarios 22 5.6 Final energy demand 24 6 Policy recommendations 27 7 References 29 2 | Wuppertal Institut & Energiaklub Summary Report Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here. 1 Introduction On December 12th 2015, 195 nations reached the Paris Agreement at COP 21, aiming to combat climate change. A key element of the agreement is the long-term goal of limit- ing global warming to “well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels”. -
Cejoc Spring 2018.Indd
ORIGINAL ARTICLE Surpassing the era of disengaged acceptance: The future of public discourse on nuclear energy Gabor Sarlos RMIT UNIVERSITY, VIETNAM Gabor Sarlos, Mariann Fekete UNIVERSITY OF SZEGED, HUNGARY DOI: 10.19195/1899-5101.11.1(20).5 ABSTRACT: Both the United Kingdom and Hungary run ambitious nuclear power plans to keep nuclear power as an important element of their energy mixes. Th e objective of the analysis is to identify if there is the intent and the possibility for a diff erent form of public engagement in shaping the nuclear future. Th e study builds on the comparative analysis of the cases of Hungary and the United Kingdom. Th e ‘communication packages’ theory serves as reference of comparison. Th e study fi nds that changing social value sets and communication technology developments create challenges to governments in securing support for the nuclear agenda. Th is challenge creates an opportunity for members of the public with ‘reluctant acceptance’ of the nuclear agenda. Building on global uncertainty, challenges to the prevailing political and economic status quo, together with the grow- ing infl uence of social media might assist the public to become vocal in their opinions about nucle- ar energy. KEYWORDS: nuclear discourse, disengagement, social values, communication package. INTRODUCTION Th e current study aims to provide an insight and comparison into the public percep- tion of nuclear energy of the UK and of Hungary. It studies the relevance of the concept of ‘public sphere’ and of ‘communication packages’ in the context of current, European discourse. A critical analysis of relevant theories and of contemporary literature sets the context of the study. -
D2.1B - Summary of Policies and Incentives Relevant to Retrofit in the EU-27
D2.1b - Summary of policies and incentives relevant to retrofit in the EU-27 Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems iNSPiRe Project Title: Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems Project Acronym: iNSPiRe Deliverable Title: D 2.1b Summary of Policies and incentives relevant to retrofit in the EU-27 Dissemination Level: PU Lead beneficiary: BSRIA Main author, Institution Helen Bedford, BSRIA Sarah Birchall, BSRIA David Bleicher, BSRIA Ian Wallis, BSRIA Emmanuelle Causse, UIPI Date: 24 March 2014 This document has been produced in the context of the iNSPiRe Project. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 314461. All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the authors view. www.inspirefp7.eu Table of Contents Preface .................................................................................................................................. 1 1 Executive Summary ...................................................................................................... -
The European Union Radiological Data Exchange Platform
Discussions https://doi.org/10.5194/essd-2019-132 Earth System Preprint. Discussion started: 16 September 2019 Science c Author(s) 2019. CC BY 4.0 License. Open Access Open Data The European Union Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange Marco Sangiorgi1, Miguel Angel Hernández-Ceballos1, Kevin Jackson2, Giorgia Cinelli1, Konstantins Bogucarskis1, Luca De Felice1, Andrei Patrascu1, Marc De Cort1. 5 1European Commission, Joint Research Centre (JRC), Ispra, Italy 2European Commission, Directorate-General for Energy (DG ENER), Luxembourg Correspondence to: Marco SANGIORGI (Marco [email protected]) 10 Abstract. During the early phase of an accident with release of radioactive material to the atmosphere having an environmental impact at local or transboundary scale, a rapid and continuous notification and exchange of information including real-time environmental monitoring data to competent authorities and the public is essential to effect appropriate countermeasures. A rapid exchange of information and data must be carried out in a harmonised and consistent manner to facilitate its interpretation and analysis. After the Chernobyl accident in 1986, and in order to avoid that competent 15 authorities be unprepared again for a similar event, the European Commission defined and put in place a Directive (Council Decision 87/600/EURATOM) which essentially obliges a member state that decides to implement widespread countermeasures to protect its population to notify the European Commission without delay. The same Council Decision also specifies that the results of radiological monitoring must be made available to the Commission and all potentially affected member states. Over the past 30 years, the European Commission has invested resources in developing and 20 improving a complete system to carry out this delicate task, currently composed of two platforms: the European Community Urgent Radiological Information Exchange, ECURIE, and the European Radiological Data Exchange Platform, EURDEP.