Differential Susceptibility of Tree Species to Oviposition by Periodical Cicadas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada Spp.) Kathryn M
Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.) Kathryn M. Fontaine¤, John R. Cooley*, Chris Simon Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so ‘‘paternal leakage’’ of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated. Citation: Fontaine KM, Cooley JR, Simon C (2007) Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.). PLoS ONE 2(9): e892. doi:10.1371/journal.pone.0000892 INTRODUCTION The seven currently-recognized 13- and 17-year periodical Although mitochondrial DNA (mtDNA) exhibits a variety of cicada species (Magicicada septendecim {17}, M. tredecim {13}, M. -
And Mushroom-Associated Alkaloids from Two Behavior Modifying
bioRxiv preprint doi: https://doi.org/10.1101/375105; this version posted December 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying 2 cicada pathogens 3 4 Greg R. Boyce1, Emile Gluck-Thaler2, Jason C. Slot2, Jason E. Stajich3, William J. Davis4, Tim 5 Y. James4, John R. Cooley5, Daniel G. Panaccione1, Jørgen Eilenberg6, Henrik H. De Fine Licht6, 6 Angie M. Macias1, Matthew C. Berger1, Kristen L. Wickert1, Cameron M. Stauder1, Ellie J. 7 Spahr1, Matthew D. Maust1, Amy M. Metheny1, Chris Simon5, Gene Kritsky7, Kathie T. Hodge8, 8 Richard A. Humber8,9, Terry Gullion10, Dylan P. G. Short11, Teiya Kijimoto1, Dan Mozgai12, 9 Nidia Arguedas13, Matt T. Kasson1,* 10 11 1Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 12 26506, USA. 13 2Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA. 14 3Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, 15 University of California, Riverside, California 92521, USA. 16 4Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan 48109, 17 USA. 18 5Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, 19 Connecticut 06269, USA. 20 6Department of Plant and Environmental Science, University of Copenhagen, Denmark. 21 7Department of Biology, Mount St. Joseph University, Cincinnati, Ohio 45233, USA. 22 8Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell 23 University, Ithaca, New York 14853, USA. -
The Evolutionary Relationships of 17-Year and 13-Year Cicadas, and Three New Species (Hornoptera, Cicadidae, Magicicada)
MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 121 The Evolutionary Relationships of 17-Year and 13-Year Cicadas, and Three New Species (Hornoptera, Cicadidae, Magicicada) BY KlCHAKD D. ALEXANDEK AND THOMAS E. MOORE ANN ARBOR MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN JULY 24, 1962 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN The publications of the Museum of Zoology, University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradsliaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, publication d which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume. a title page, table of contents, and an index are supplied to libraries and indi- viduals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum tech- niques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan. No. 1. Directions for collecting and preserving specimens of dragonflies for museum purposes. By E. B. WILLIAMSON.(1916) 15 pp., 3 figs. .......... $0.25 No. -
The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2006 The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana Dustin W. Varble University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Animal Sciences Commons Recommended Citation Varble, Dustin W., "The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/4519 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Dustin W. Varble entitled "The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. David A. Buehler, Major Professor We have read this thesis and recommend its acceptance: Frank Van Manen, Roger Tankersley Jr. Joseph R. Robb Accepted for the Council: Carolyn R. -
And 17-Y Life Cycles Among Three Periodical Cicada Lineages
Independent divergence of 13- and 17-y life cycles SEE COMMENTARY among three periodical cicada lineages Teiji Sotaa,1, Satoshi Yamamotob, John R. Cooleyc, Kathy B. R. Hillc, Chris Simonc, and Jin Yoshimurad,e,f aDepartment of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; bGraduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan; cDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268-3043; dDepartment of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; eMarine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Chiba, Japan; and fDepartment of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 Edited by Mary Jane West-Eberhard, Smithsonian Tropical Research Institute, Ciudad Universitaria, Costa Rica, and approved February 22, 2013 (received for review November 16, 2012) The evolution of 13- and 17-y periodical cicadas (Magicicada)is group (6, 14–18), and only rough divergence times among species enigmatic because at any given location, up to three distinct spe- have been inferred (8, 10). Thus, a comprehensive molecular cies groups (Decim, Cassini, Decula) with synchronized life cycles phylogeny covering all of the extant broods, their phylogeography, are involved. Each species group is divided into one 13- and one and divergence time has been lacking until now. 17-y species with the exception of the Decim group, which con- We conducted molecular phylogenetic and population genetic tains two 13-y species—13-y species are Magicicada tredecim, analyses by using nuclear and mitochondrial DNA markers for Magicicada neotredecim, Magicicada tredecassini, and Magicicada samples collected over a 30-y period (1978–2008). -
The Complete Genome Sequences of Two Species Of
F1000Research 2021, 10:215 Last updated: 09 SEP 2021 DATA NOTE The complete genome sequences of two species of seventeen- year cicadas: Magicicada septendecim and Magicicada septendecula [version 1; peer review: 2 approved with reservations] Harold B. White1, Stacy Pirro 2 1Department of Chemistry and Biochemistry, University of Delaware, Delaware, USA 2Department Biodiversity, Iridian Genomes, Bethesda, MD, 20817, USA v1 First published: 16 Mar 2021, 10:215 Open Peer Review https://doi.org/10.12688/f1000research.27309.1 Latest published: 16 Mar 2021, 10:215 https://doi.org/10.12688/f1000research.27309.1 Reviewer Status Invited Reviewers Abstract The genus Magicicada (Hemiptera: Cicadidae) includes the periodical 1 2 cicadas of Eastern North America. Spending the majority of their long lives underground, the adult cicadas emerge every 13 or 17 years to version 1 spend 4-6 weeks as adult to mate. We present the whole genome 16 Mar 2021 report report sequences of two species of 17-year cicadas, Magicicada septendecim and Magicicada septendecula. The reads were assembled by a de novo 1. Hu Li , China Agricultural University, method followed by alignments to related species. Annotation was performed by GeneMark-ES. The raw and assembled data is available Beijing, China via NCBI Short Read Archive and Assembly databases. 2. Shuai Zhan, Chinese Academy of Sciences, Keywords Shanghai, China Genome, assembly, arthropoda, insecta, hemiptera Any reports and responses or comments on the article can be found at the end of the article. This article is included in the Genome Sequencing gateway. Page 1 of 6 F1000Research 2021, 10:215 Last updated: 09 SEP 2021 Corresponding author: Stacy Pirro ([email protected]) Author roles: White HB: Resources; Pirro S: Data Curation, Investigation, Resources Competing interests: No competing interests were disclosed. -
Behavior and Evolution of Periodical Cicadas (Magicicada Spp.)
Behavior and evolution of periodical cicadas (Magicicada spp.) by David Crane Marshall A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biology) The University of Michigan 2000 Copyright David C. Marshall Doctoral Committee: Professor Richard D. Alexander, Chair Professor George Estabrook Professor Gerald Smith Professor Priscilla Tucker ACKNOWLEDGMENTS Many individuals and organizations contributed generously to this research. The Frank Ammermann Endowment of the Insect Division of the University of Michigan Museum of Zoology provided essential financial assistance throughout the study. The Museum of Zoology supported portions of this research with grants from the Hinsdale- Walker and Tinkle Memorial Endowments. Early financial assistance was provided by the Horace H. Rackham School of Graduate Studies. Japan Television Workshop, Ltd., paid field expenses in 1998. It is difficult to predict where conditions appropriate for field studies of Magicicada behavior will exist in any given year, and many state and local government organizations were extremely tolerant of our last-minute arrival each Spring and willing to permit us access to government lands. Several private landholders allow prolonged access to their property without thought of compensation; we are strongly indebted to them for this assistance. I hope that future researchers will pay the utmost respect to the property rights of these individuals and organizations should future work at these locations be desired: Alum Springs Young Life Camp, Rockbridge Co., VA Washington and Lee University, Rockbridge Co., VA Horsepen Lake State Wildlife Management Area, Buckingham Co., VA Siloam Springs State Park, Brown and Adams Counties, IL Harold E. Alexander Wildlife Management Area, Sharp Co., AR M. -
Cooley, J. R. 1999. Sexual Behavior in North American Cicadas of The
Sexual behavior in North American cicadas of the genera Magicicada and Okanagana by John Richard Cooley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biology) The University of Michigan 1999 Doctoral Committee: Professor Richard D. Alexander, Chairman Professor George Estabrook Professor Brian Hazlett Associate Professor Warren Holmes John R. Cooley © 1999 All Rights Reserved To my wife and family ii ACKNOWLEDGMENTS This work was supported in part by the Horace H. Rackham School of Graduate Studies, the Department of Biology, the Museum of Zoology (UMMZ), the Frank W. Ammerman Fund of the UMMZ Insect Division, and by Japan Television Workshop Co., LTD. I thank the owners and managers of our field sites for their patience and understanding: Alum Springs Young Life Camp, Rockbridge County, VA. Horsepen Lake State Wildlife Management Area, Buckingham County, VA. Siloam Springs State Park, Brown and Adams Counties, IL. Harold E. Alexander Wildlife Management Area, Sharp County, AR. M. Downs, Jr., Sharp County, AR. Richard D. Alexander, Washtenaw County, MI. The University of Michigan Biological Station, Cheboygan and Emmet Counties, MI. John Zyla of the Battle Creek Cypress Swamp Nature Center, Calvert County, MD provided tape recordings and detailed distributions of Magicicada in Maryland. Don Herren, Gene Kruse, and Bill McClain of the Illinois Department of Natural Resources, and Barry McArdle of the Arkansas State Game and Fish Commission helped obtain permission to work on state lands. Keiko Mori and Mitsuhito Saito provided funding and high quality photography for portions of the 1998 field season. Laura Krueger performed the measurements in Chapter 7. -
Independent Divergence of 13- and 17-Y Life Cycles Among Three Periodical Cicada Lineages
Independent divergence of 13- and 17-y life cycles among three periodical cicada lineages Teiji Sotaa,1, Satoshi Yamamotob, John R. Cooleyc, Kathy B. R. Hillc, Chris Simonc, and Jin Yoshimurad,e,f aDepartment of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; bGraduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan; cDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268-3043; dDepartment of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; eMarine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Chiba, Japan; and fDepartment of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 Edited by Mary Jane West-Eberhard, Smithsonian Tropical Research Institute, Ciudad Universitaria, Costa Rica, and approved February 22, 2013 (received for review November 16, 2012) The evolution of 13- and 17-y periodical cicadas (Magicicada)is group (6, 14–18), and only rough divergence times among species enigmatic because at any given location, up to three distinct spe- have been inferred (8, 10). Thus, a comprehensive molecular cies groups (Decim, Cassini, Decula) with synchronized life cycles phylogeny covering all of the extant broods, their phylogeography, are involved. Each species group is divided into one 13- and one and divergence time has been lacking until now. 17-y species with the exception of the Decim group, which con- We conducted molecular phylogenetic and population genetic tains two 13-y species—13-y species are Magicicada tredecim, analyses by using nuclear and mitochondrial DNA markers for Magicicada neotredecim, Magicicada tredecassini, and Magicicada samples collected over a 30-y period (1978–2008). -
I Principali Insetti Fitofagi Del Castagno a Rischio Di Introduzione in Italia
Giuseppino Sabbatini Peverieri - Pio Federico Roversi I principali insetti fitofagi castagnodel a rischio di introduzione in Italia rogetto «Bioinfocast» MiPAAF DD n. 4496 del 27/11/2012 P Giuseppino Sabbatini Peverieri - Pio Federico Roversi I principali insetti fitofagi castagnodel a rischio di introduzione in Italia Progetto «Bioinfocast» MiPAAF DD n. 4496 del 27/11/2012 Consiglio per la Ricerca e la sperimentazione in Agricoltura (CRA) ESCLUSIONE DI RESPONSABIILITÀ Lo scopo del presente documento è quello di fornire una panoramica sulle specie di insetti fitofagi delle piante del genere Castanea a livello mondiale, ma non è da consi- derarsi un lavoro omnicomprensivo. La presente pubblicazione può fornire importanti informazioni, ma gli autori non garantiscono che il contenuto sia privo di errori di alcun genere e non garantiscono la veridicità delle informazioni riportate in quanto ottenute attingendo dalla bibliografia disponibile sull’argomento in ambito internazionale. Le immagini riportate nel presente documento possono essere soggette a copyright o a limitazioni specifiche al loro uso. Gli autori declinano ogni responsabilità per eventua- li errori, perdite o altra conseguenza che possono derivare dall’uso delle informazioni del presente documento. Le denominazioni utilizzate e la presentazione del materiale in questa pubblicazione non implicano l'espressione di alcuna opinione da parte degli auto- ri relativa allo status giuridico di alcun paese, territorio, città o area o delle sue autorità o alla delimitazione delle loro frontiere o confini. GIUSEPPINO SABBATINI PEVERIERI, PIO FEDERICO ROVERSI CRA-ABP, Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per l’Agrobiologia e la Pedologia, via di Lanciola 12a, 50125 Firenze e-mail: [email protected] [email protected] Citazione: Sabbatini Peverieri G., Roversi P.F., 2014. -
Acoustic Adaptations of Periodical Cicadas (Hemiptera: Magicicada)
Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2006 The Linnean Society of London? 2006 90? 1524 Original Article PERIODICAL CICADAS U. OBERDÖRSTER and P. R. GRANT Biological Journal of the Linnean Society, 2007, 90, 15–24. With 1 figure Acoustic adaptations of periodical cicadas (Hemiptera: Magicicada) UTA OBERDÖRSTER† and PETER R. GRANT* Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ, 08544-1003, USA Received 14 March 2005; accepted for publication 15 January 2006 We studied the trade-off between traits that function in mate attraction and those that function in enemy avoidance by contrasting features of acoustic communication in cicadas differentially at risk to predators in the same envi- ronment. Two genera of North American cicadas were studied: Magicicada and Tibicen. Magicicada species of peri- odical cicadas, with 17-year life cycles, seek mates in dense aggregations of calling males that are made possible by the relative ineffectiveness of predators to control their numbers. During the breeding season, Magicicada are so abundant that they satiate their predators. From their relative freedom from predation, it is to be expected that traits for attracting mates are emphasized in Magicicada compared with the more solitary genus Tibicen, which reproduce at much lower densities. Males of solitary species are expected to sing more loudly and at low pitch because both features enhance long-distance transmission. These two features were confirmed by measurement. Magicicada septendecim appears to be the most divergent species, evolutionarily, in terms of an unusually sharply tuned sound resonating system, low resonant frequency, and quietness of its song that cannot be entirely explained by body size. -
CHAPTER 1 - TABLE of CONTENTS FISH and WILDLIFE of CONSERVATION CONCERN Introduction
2015 Connecticut Wildlife Action Plan CHAPTER 1 - TABLE OF CONTENTS FISH AND WILDLIFE OF CONSERVATION CONCERN Introduction ............................................................................................................................ 1 Northeast Regional Context..................................................................................................... 1 Connecticut’s Fish and Wildlife................................................................................................ 2 Mammals ................................................................................................................................ 3 Large Mammals and Furbearers................................................................................................. 4 Marine Mammals........................................................................................................................ 6 Small Mammals........................................................................................................................... 8 Birds...................................................................................................................................... 11 Grassland Birds ......................................................................................................................... 14 Shrubland Birds......................................................................................................................... 15 Night Birds................................................................................................................................