Independent Divergence of 13- and 17-Y Life Cycles Among Three Periodical Cicada Lineages

Total Page:16

File Type:pdf, Size:1020Kb

Independent Divergence of 13- and 17-Y Life Cycles Among Three Periodical Cicada Lineages Independent divergence of 13- and 17-y life cycles among three periodical cicada lineages Teiji Sotaa,1, Satoshi Yamamotob, John R. Cooleyc, Kathy B. R. Hillc, Chris Simonc, and Jin Yoshimurad,e,f aDepartment of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; bGraduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan; cDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268-3043; dDepartment of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; eMarine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Chiba, Japan; and fDepartment of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 Edited by Mary Jane West-Eberhard, Smithsonian Tropical Research Institute, Ciudad Universitaria, Costa Rica, and approved February 22, 2013 (received for review November 16, 2012) The evolution of 13- and 17-y periodical cicadas (Magicicada)is group (6, 14–18), and only rough divergence times among species enigmatic because at any given location, up to three distinct spe- have been inferred (8, 10). Thus, a comprehensive molecular cies groups (Decim, Cassini, Decula) with synchronized life cycles phylogeny covering all of the extant broods, their phylogeography, are involved. Each species group is divided into one 13- and one and divergence time has been lacking until now. 17-y species with the exception of the Decim group, which con- We conducted molecular phylogenetic and population genetic tains two 13-y species—13-y species are Magicicada tredecim, analyses by using nuclear and mitochondrial DNA markers for Magicicada neotredecim, Magicicada tredecassini, and Magicicada samples collected over a 30-y period (1978–2008). These samples tredecula; and 17-y species are Magicicada septendecim, Magici- represent all 15 extant broods and all known species (Table S1). cada cassini, and Magicicada septendecula. Here we show that the divergence leading to the present 13- and 17-y populations differs Results and Discussion considerably among the species groups despite the fact that each Phylogenetic analyses and divergence time estimation based on group exhibits strikingly similar phylogeographic patterning. The four nuclear and three mitochondrial genes (Table S2) clearly ∼ earliest divergence of extant lineages occurred 4 Mya with one reveal the monophyly of each of the three species groups EVOLUTION branch forming the Decim species group and the other subsequently (Decim, Cassini, and Decula) and the sister relationship be- splitting 2.5 Mya to form the Cassini and Decula species groups. tween Cassini and Decula (Fig. 1). A Bayesian relaxed clock The earliest split of extant lineages into 13- and 17-y life cycles analysis shows that the three species groups diverged 3.9 Mya. occurred in the Decim lineage 0.5 Mya. All three species groups Initially the Decim group diverged from the ancestor of Cassini + experienced at least one episode of life cycle divergence since the Decula, then Cassini and Decula separated 2.5 Mya (Fig. 1). last glacial maximum. We hypothesize that despite independent The mitochondrial gene genealogy further shows divergence origins, the three species groups achieved their current overlap- associated with regions, and partly with life cycles (Fig. 2, Figs. ping distributions because life-cycle synchronization of invading S1 and S2, and Table S3). We distinguished four mitochondrial congeners to a dominant resident population enabled escape from haplotype groups in Decim and three each in Cassini and Decula predation and population persistence. The repeated life-cycle diver- (Fig. 2 A–C). The geographic distributions of mitochondrial gences supported by our data suggest the presence of a common haplotype groups within each species group show similar divi- genetic basis for the two life cycles in the three species groups. sions among eastern, middle, and western regions (Fig. 2 D–F). In Decim, there is also a major divergence between northern and life-cycle shift | nurse brood | parallel evolution | speciation southern groups corresponding to formally distinguished mito- chondrial lineages A and B, respectively (15). Group A is di- eriodical cicadas (Magicicada) in the eastern United States vided into three groups, Ae, Am, and Aw, which occur in the Prepresent one of the most spectacular life history and eastern, middle, and western parts of the United States east of – population phenomena in nature (1 10). These periodical ci- the Great Plains, respectively. Populations of Ae and Am exhibit cadas spend most of their lives (13 y in the south, 17 y in the a 17-y cycle (Magicicada septendecim); those of Aw both 17-y north) as underground juveniles except for a brief 2- to 4-wk (M. septendecim) and 13-y (Magicicada neotredecim) cycles; and period when adults emerge simultaneously in massive num- those of B show only a 13-y cycle (Magicicada tredecim). At the bers. With few exceptions, at any given location, all of the pe- boundary of Ae and Am, a few populations possess both Ae and riodical cicadas share the same life cycle and emerge on the same Am haplotypes. The Cassini group consists of three haplotype “ ” schedule, forming a single-year class referred to as a brood. groups, Ce, Cm, and Cw, again occurring in the eastern, middle, Surprisingly, each brood consists of multiple species from three and western regions, respectively (Fig. 2). Populations with Ce species groups (Decim, Cassini, Decula). and Cm show 17-y cycles only (Magicicada cassini), whereas These three groups were considered to have diverged from thoseofCwshowboth17-and13-ycycles(M. cassini and each other allopatrically and to have later become sympatric and formed 13- and 17-y life cycles (2). The prolonged, prime- numbered life cycles were hypothesized to have evolved in re- Author contributions: T.S. and J.Y. designed research; T.S., S.Y., J.R.C., K.B.R.H., C.S., and sponse to Pleistocene climatic cooling (9, 11) to avoid the adverse J.Y. performed research; T.S. and S.Y. analyzed data; and T.S., J.R.C., and C.S. wrote effect of low population density on mating success (9, 12, 13). the paper. Another view hypothesized that the long synchronized life cycles The authors declare no conflict of interest. evolvedinassociationwiththepredator avoidance strategy This article is a PNAS Direct Submission. (2, 4, 8) and that this took place before both the glacial periods Freely available online through the PNAS open access option. and the split of the three species groups (10) based on approx- Data deposition: The sequences reported in this paper have been deposited in the DNA imate genetic distances among species groups (8). To test these Data Bank of Japan (accession nos. AB740543–AB740917). hypotheses, phylogenetic information about the relationships of 1To whom correspondence should be addressed. E-mail: [email protected]. species, broods, and populations is essential. However, phyloge- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. netic studies of Magicicada have been largely limited to the Decim 1073/pnas.1220060110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1220060110 PNAS Early Edition | 1of6 Downloaded by guest on September 23, 2021 Sample code, Haplotype Life Species species, brood group cycle group en490 septendecula V en531 septendecula XIV en464 septendecula I en591 tredecula XXIII Dm en525 septendecula X en566 tredecula XXII De + Dm MRCA en542 tredecula XIX 0.16 [0.06-0.31] en561 tredecula XIX en524 septendecula IX -/91 en735 septendecula XIV Decula De en470 septendecula II en506 septendecula V Decula MRCA 13- & 17-year en515 septendecula VI 0.23 [0.10-0.45] 1/99 en485 septendecula IV en036 septendecula VI en727 septendecula XIII Dw en535 tredecula XIX Dw MRCA .99/95 en596 tredecula XXIII 0.08 [0.02-0.19] Cassini + Decula en480 septendecula III MRCA en326 cassini VIII Cm MRCA -/81 2.51 [1.65-3.56] en331 cassini IX 1/98 0.08 [0.02-0.19] en271 cassini V 1/99 en262 cassini I Cm en336 cassini X .87/86 en711 cassini XIV Ce MRCA .89/- en701 cassini XIV 0.12 [0.03-0.24] 17-year en356 cassini X 1/100 en332 cassini IX Ce Cassini MRCA Cassini en266 cassini II 0.32 [0.15-0.56] 1/99 1/75 en317 cassini V en283 cassini III en438 tredecassini XXII Cw MRCA en402 tredecassini XXIII 0.16 [0.04-0.33] en391 tredecassini XIX Cw .72/- en291 cassini IV en353 cassini X .95/81 13- & 17-year Magicicada MRCA en685 cassini XIII 3.89 [3.08-4.69] 1/100 en121 septendecim X Ae MRCA en086 septendecim IX 0.11 [0.03-0.23] en001 septendecim I en061 septendecim VII Ae 1/- Ae+Am+Aw MRCA en051 septendecim VI 0.27 [0.12-0.46] en641 septendecim XIV Fig. 1. Phylogeny and divergence en010 septendecim II times of Magicicada resulting from Am MRCA en013 septendecim V 17-year a Bayesian relaxed clock analysis 0.09 [0.03-0.20] en671 septendecim XIV 1/78 with nuclear and mitochondrial en152 septendecim X Am data showing different histories of en011 septendecim V .99/84 en101 septendecim IX divergence into 13- and 17-y species en606 septendecim XIII Decim among the three species groups. en172 neotredecim XIX Outgroup taxa are not shown. Bars en257 neotredecim XXIII show 95% highest probability den- Decim MRCA en181 neotredecim XIX Aw 1/86 1/91 sity (HPD) intervals of estimated 0.53 [0.26-0.90] 1/100 en227 neotredecim XXIII en021 septendecim divergence times. For major nodes, IV 13- & 17-year Aw MRCA en032 septendecim III divergence times and 95% HPD 0.12 [0.04-0.25] en242 tredecim XXIII intervals in brackets are described. en224 tredecim XXII Node supports are posterior prob- en196 tredecim XIX 1/100 B abilities of the Bayesian inference B MRCA en251 tredecim XXIII 0.13 [0.03-0.29] en166 tredecim XIX 13-year and bootstrap percentages in a en201 tredecim XIX maximum-likelihood analysis (shown Pliocene Pleistocene when >0.70 or >70%).
Recommended publications
  • Supporting Information
    Supporting Information Campbell et al. 10.1073/pnas.1421386112 SI Materials and Methods transformed into Escherichia coli JM109 High Efficiency Com- Genome Sequencing. The following amount of data were generated petent Cells. Transformed cells were grown in 3 mL of LB broth at for each sequencing technology: 136,081,956 pairs of 100 × 2 37 °C overnight, and plasmids were purified with E.Z.N.A. plas- short insert Illumina HiSeq reads for about 27 Gb total; 50,884,070 mid DNA mini kit I. The purified plasmids were used as PCR pairs of 100 × 2 large insert HiSeq reads for about 10 Gb total; templates to for further amplification of the probe region. The and 259,593 reads averaging 1600 nt for about 421 Mb total of amplified probes were subject to nick translation (>175 ng/μL PacBio data. DNA, 1× nick-translation buffer, 0.25 mM unlabeled dNTPs, 50 μM labeled dNTPs, 2.3 U/μL DNA polymerase I, 9 mU/μL Genome Annotation. Annotation of Hodgkinia DNA was done Dnase), using either Cy3 (MAGTRE006 and MAGTRE005), or using the phmmer module of HMMER v3.1b1 (1). All ORFs Cy5 (MAGTRE001 and MAGTRE012), and size selected for beginning with a start codon that overlapped a phmmer hit sizes in the range of 100–500 bp using Ampure XP beads. Probes were searched against a database of all Hodgkinia genes using with at least seven incorporated labeled dNTPs per 1,000 nucle- BLASTX 2.2.28+. MAGTRE Hodgkinia genes were considered otides as determined by spectroscopy were used for hybridization.
    [Show full text]
  • Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada Spp.) Kathryn M
    Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.) Kathryn M. Fontaine¤, John R. Cooley*, Chris Simon Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so ‘‘paternal leakage’’ of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated. Citation: Fontaine KM, Cooley JR, Simon C (2007) Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.). PLoS ONE 2(9): e892. doi:10.1371/journal.pone.0000892 INTRODUCTION The seven currently-recognized 13- and 17-year periodical Although mitochondrial DNA (mtDNA) exhibits a variety of cicada species (Magicicada septendecim {17}, M. tredecim {13}, M.
    [Show full text]
  • And Mushroom-Associated Alkaloids from Two Behavior Modifying
    bioRxiv preprint doi: https://doi.org/10.1101/375105; this version posted December 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying 2 cicada pathogens 3 4 Greg R. Boyce1, Emile Gluck-Thaler2, Jason C. Slot2, Jason E. Stajich3, William J. Davis4, Tim 5 Y. James4, John R. Cooley5, Daniel G. Panaccione1, Jørgen Eilenberg6, Henrik H. De Fine Licht6, 6 Angie M. Macias1, Matthew C. Berger1, Kristen L. Wickert1, Cameron M. Stauder1, Ellie J. 7 Spahr1, Matthew D. Maust1, Amy M. Metheny1, Chris Simon5, Gene Kritsky7, Kathie T. Hodge8, 8 Richard A. Humber8,9, Terry Gullion10, Dylan P. G. Short11, Teiya Kijimoto1, Dan Mozgai12, 9 Nidia Arguedas13, Matt T. Kasson1,* 10 11 1Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 12 26506, USA. 13 2Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA. 14 3Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, 15 University of California, Riverside, California 92521, USA. 16 4Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan 48109, 17 USA. 18 5Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, 19 Connecticut 06269, USA. 20 6Department of Plant and Environmental Science, University of Copenhagen, Denmark. 21 7Department of Biology, Mount St. Joseph University, Cincinnati, Ohio 45233, USA. 22 8Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell 23 University, Ithaca, New York 14853, USA.
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • Pehr Kalm's Description of the Periodical Cicada, Magicicada Septendecim L.1
    PEHR KALM'S DESCRIPTION OF THE PERIODICAL CICADA, MAGICICADA SEPTENDECIM L.1 From Kongl. Svenska Vetenskaps Academiens Handlingar, 17: 101-116, 1756. Trans- lated by Esther Louise Larsen (Mrs. K. E. Doak) of Crown Point, Ind.., and submitted for publication by Professor J. J. Davis, Purdue University, Lafayette, Ind. INTRODUCTION In 1749, a heavy infestation of the periodical cicada occurred in Pennsylvania. Pehr Kalm, who was visiting there, described in detail the insect in its 18th century surroundings. His paper was published in Kongl. Svenska Vetenskaps Academiens, Handlingar, 17: 101-116, 1756, under the title "Beskrifning pa et slags Grashopper uti Norra America" (Description of a type of Grasshopper in North America). Because of the misleading title, it is doubtful that many scientists are aware of the existence of this early report on the periodical cicada. Kalm refers to the insect as a type of grasshopper, but he also says that it may well prove to be a cicada. The annual cicada, which Kalm and his contemporaries heard, was thought to be a vagrant periodical cicada. Although he was not clear on the taxonomy of the insect, his sharp observa- tions have given us an accurate account of the infestation. Among the many flying insects in North America there is a species of grass- hopper which seems to merit special discussion because of its extraordinary characteristics. The English refer to this species as locust, the Swedes, grashoppor. The Latin name may well be Cicada, maxilla utraque lineis octo transversis concavis; alarum margine inferiore lutescents. This cicada would seem to be exactly the same species as that found in the Provence and Languedoc in France, which is illustrated and described by Mr.
    [Show full text]
  • An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
    © Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant.
    [Show full text]
  • Homologies of the Head of Membracoidea Based on Nymphal Morphology with Notes on Other Groups of Auchenorrhyncha (Hemiptera)
    Eur. J. Entomol. 107: 597–613, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1571 ISSN 1210-5759 (print), 1802-8829 (online) Homologies of the head of Membracoidea based on nymphal morphology with notes on other groups of Auchenorrhyncha (Hemiptera) DMITRY A. DMITRIEV Illinois Natural History Survey, Institute of Natural Resource Sustainability at the University of Illinois at Urbana-Champaign, Champaign, Illinois, USA; e-mail: [email protected] Key words. Hemiptera, Membracoidea, Cicadellidae, Cicadoidea, Cercopoidea, Fulgoroidea, head, morphology, ground plan Abstract. The ground plan and comparative morphology of the nymphal head of Membracoidea are presented with particular emphasis on the position of the clypeus, frons, epistomal suture, and ecdysial line. Differences in interpretation of the head structures in Auchenorrhyncha are discussed. Membracoidea head may vary more extensively than heads in any other group of insects. It is often modified by the development of an anterior carina, which apparently was gained and lost multiple times within Membracoidea. The main modifications of the head of Membracoidea and comparison of those changes with the head of other superfamilies of Auchenorrhyncha are described. INTRODUCTION MATERIAL AND METHODS The general morphology of the insect head is relatively Dried and pinned specimens were studied under an Olympus well studied (Ferris, 1942, 1943, 1944; Cook, 1944; SZX12 microscope with SZX-DA drawing tube attachment. DuPorte, 1946; Snodgrass, 1947; Matsuda, 1965; Detailed study of internal structures and boundaries of sclerites Kukalová-Peck, 1985, 1987, 1991, 1992, 2008). There is based on examination of exuviae and specimens cleared in are also a few papers in which the hemipteran head is 5% KOH.
    [Show full text]
  • Integrative Approach Unravels the Evolutionary History of Western Mediterranean Small Cicadas (Hemiptera: Cicadettini)
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Integrative approach unravels the evolutionary history of Western Mediterranean small cicadas (Hemiptera: Cicadettini) Gonçalo João Barreto da Costa Mestrado em Biologia Evolutiva e Desenvolvimento Dissertação orientada por: Prof. Doutor Octávio Paulo Profª. Doutora Paula Simões 2017 "In the end we will conserve only what we love, we will love only what we understand, and we will understand only what we are taught." Baba Dioum Agradecimentos Antes de mais quero agradecer aos meus orientadores, Octávio Paulo e Paula Simões, por me terem apoiado durante este extenso (!) período de orientação. À Prof. Paula por me ter confiado as suas belas cigarras de Marrocos, e ter-me dado a oportunidade única de olhar com olhos de ver a sua colecção bem completa de cigarras mesmo interessantes! E falando em olhos... Por me ter emprestado os seus na descrição das cores das cigarras... Sem a Professora as cigarras ficavam-se por castanhas e pronto! A sua dedicação, boa disposição e acessibilidade quase ubíqua às minhas perguntas permitiu-me avançar sempre com o trabalho e com a escrita. O Prof. Octávio, chefe do grupo, já é conhecido pela genialidade quem tem em analisar os dados e ver para lá do que nos parece óbvio! Comprovei que é bem verdade quando trouxe dados preliminares do BEAST e o Professor para além de ver aquilo que era óbvio conseguiu ver para além lá daquela primeira camada e adicionar muito mais informação que aquela que conseguiria observar. Ainda que o Professor estivesse sempre 125% do tempo ocupado sempre conseguia arranjar um tempo para discutir novos métodos, novas abordagens aos meus datasets, novos artigos e resultados.
    [Show full text]
  • The Evolutionary Relationships of 17-Year and 13-Year Cicadas, and Three New Species (Hornoptera, Cicadidae, Magicicada)
    MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 121 The Evolutionary Relationships of 17-Year and 13-Year Cicadas, and Three New Species (Hornoptera, Cicadidae, Magicicada) BY KlCHAKD D. ALEXANDEK AND THOMAS E. MOORE ANN ARBOR MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN JULY 24, 1962 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN The publications of the Museum of Zoology, University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradsliaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, publication d which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume. a title page, table of contents, and an index are supplied to libraries and indi- viduals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum tech- niques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan. No. 1. Directions for collecting and preserving specimens of dragonflies for museum purposes. By E. B. WILLIAMSON.(1916) 15 pp., 3 figs. .......... $0.25 No.
    [Show full text]
  • The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2006 The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana Dustin W. Varble University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Animal Sciences Commons Recommended Citation Varble, Dustin W., "The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/4519 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Dustin W. Varble entitled "The Effects of a Periodic Cicada Emergence on Forest Birds and the Ecology of Cerulean Warblers at Big Oaks National Wildlife Refuge, Indiana." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. David A. Buehler, Major Professor We have read this thesis and recommend its acceptance: Frank Van Manen, Roger Tankersley Jr. Joseph R. Robb Accepted for the Council: Carolyn R.
    [Show full text]
  • The Case of Periodical Insects As Natural Prime Numbers Generators
    Agent Based Simulation in Biology: the Case of Periodical Insects as Natural Prime Numbers Generators Marco Remondino - Lagrange Project (main author) Alessandro Cappellini - Sanpaolo IMI (co-author) University of Turin, Italy Emails: [email protected]; [email protected] KEYWORDS: magicicada, septendecim, tredecim, cyle of 17 and 13 years respectively (Remondino, 2005). emergence, complex behaviour, aggregation, simulation These are among the longest living insects in the world; they display a unique living behaviour, since they remain in the ground for all but their last few weeks of life, when they ABSTRACT emerge “en masse” from the ground into the forest where they sing, mate, eat, lay eggs and then die. The nymphs of Magicicada is the genus of the 13 and 17 year periodical the periodical cicadas live underground, at depths of 30 cm cicadas of eastern North America; these insects display a (one foot) or more, feeding on the juices of plant roots. unique combination of long life cycles, periodicity, and They stay immobile and go through five development mass emergences. Their nymphs live underground and stay stages before constructing an exit tunnel in the spring of immobile before constructing an exit tunnel in the spring of their 13th or 17th year. Adult periodical cicadas live only their 13th or 17th year, depending on the species. Once out, for a few weeks: by mid-July, they will all be gone. Their the adult insects live only for a few weeks with one sole short life has one sole purpose: reproduction. After mating, purpose: reproduction. Both 13 and 17 are prime numbers; the male weakens and dies.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]