Kinetoplstea: Trypanosomatida) И Насекомые (Insecta): Паттерны Коэволюции И Диверсификация Систем Паразит–Хозяин

Total Page:16

File Type:pdf, Size:1020Kb

Kinetoplstea: Trypanosomatida) И Насекомые (Insecta): Паттерны Коэволюции И Диверсификация Систем Паразит–Хозяин ГЛАВА I. ТРИПАНОСОМАТИДЫ (KINETOPLSTEA: TRYPANOSOMATIDA) И НАСЕКОМЫЕ (INSECTA): ПАТТЕРНЫ КОЭВОЛЮЦИИ И ДИВЕРСИФИКАЦИЯ СИСТЕМ ПАРАЗИТ–ХОЗЯИН А.О. Фролов Зоологический институт Российской академии наук, Университетская наб. 1, 199034, Санкт-Петербург, Россия; e-mail: [email protected] ВВЕДЕНИЕ организованная в десятки макси и тысячи мини кольцевых молекул (Vickerman and Preston 1976; Понятие «коэволюция» не принадлежит к Frolov and Karpov 1995; Lukeš et al. 2002; von der числу строгих биологических терминов и в ра- Heyden et al. 2004). В состав Kinetoplastea входят ботах разных авторов может использоваться для как свободноживущие, так и паразитические характеристики различных аспектов взаимоотно- организмы (Vickerman 1976; Moreira et al. 2004). шений, складывающихся между представителями Филогенетические исследования показывают разных таксонов, объединенных тесными эколо- (Рис. 1), что переход к паразитизму происходил гическими связями. Однако даже в своем наи- у кинетопластид независимо и неоднократно в более консервативном выражении (Janzen 1980) нескольких отрядах этих жгутиконосцев (Moreira оно предполагает наличие существенного разно- et al. 2004; Simpson et al. 2006; Deschamps et al. образия типов и форм таких взаимоотношений, 2011; Lukeš et al. 2014). Следствием одного из та- которые могут проявляться на популяционном, ких эволюционных событий и стало обособление организменном, биохимическом и молекулярном группы облигатных паразитов – трипаносоматид уровнях. Считается, кроме того, что коэволюци- (Vickerman 1994; Moreira et al. 2004; Simpson et al. онные процессы способны существенным образом 2004; Flegontov et al. 2013; Lukeš et al. 2014). От влиять на диверсификацию живых систем, явля- остальных кинетопластид представителей отряда ясь важнейшим механизмом формирования био- Trypanosomatida отличает наличие в их клетках разнообразия (Hembry et al. 2014). В этой главе единственного (переднего) жгутика и особая ор- мы рассмотрим отдельные паттерны коэволюции ганизация кинетопластной ДНК (эукинетопласт) паразитических жгутиконосцев трипаносоматид (Vickerman and Preston 1976; Frolov and Karpov и их хозяев – насекомых и проанализируем из- 1995; Lukeš et al. 2002). Отряд Trypanosomatida вестные примеры диверсификации систем пара- включает одно сем. Trypanosomatidae. В состав зит–хозяин, формирующихся при их участии. семейства входят паразиты человека, животных и В современной системе эукариот трипаносо- растений, обладающие диксенными жизненными матиды представлены отрядом Trypanosomatida циклами: Trypanosoma, Leishmania, Phytomonas и Kent, 1880 stat. nov. Hollande, 1952, входящим многочисленные моноксенные паразиты насеко- в класс Kinetoplastea Honigberg, 1963 emend. мых: Crithidia, Leptomonas, Blastocrithidia, Herpeto- Vickerman, 1976 (Рис. 1). Кинетопластиды, в свою monas, Angomonas, Strigomonas, Blechomonas, Novy- очередь, вместе с их ближайшими родственни- monas (Рис. 1). ками эвгленовыми жгутиконосцами формируют Наибольшую известность трипаносоматиды крупный монофилетический таксон Euglenozoa, получили как возбудители серьезных заболе- входящий в супергруппу Excavata (Roger and ваний человека: болезни Чагаса, Африканской Simpson 2009). От эвгленовых и всех других эу- сонной болезни, кала-азара, болезни Боровского и кариот кинетопластид отличает присутствие в их др., распространенных в странах с жарким клима- клетках уникальной органеллы – кинетопласта, том. По данным ВОЗ не менее 20 млн человек яв- представляющего собой специализированный ляются носителями различных трипаносомозов и субкомпартмент единого митохондриона клетки, лейшманиозов, и около 3 млн новых заболеваний, в котором локализована митохондриальная ДНК, вызываемых этими паразитами, ежегодно реги- Глава I. Трипаносоматиды и насекомые 17 стрируются по всему миру (WHO 2012). Данные нии трипаносоматид (Maslov et al. 2007; Votýpka ВОЗ показывают, что более трети населения et al. 2010, 2012, 2013; Jirků et al. 2012; Kostygov et Земного шара постоянно проживает в зонах риска al. 2016), нежели упразднением описанных ранее заражения трипаносомозами и лейшманиозами. (Kostygov et al. 2014). Заболевания диких и домашних животных, такие как нагана, сурра, дурина, вызываемых различ- 1. О ПРОИСХОЖДЕНИИ ными видами трипаносом, зачастую протекают в ТРИПАНОСОМАТИД форме эпизоотий, нанося серьезный экономиче- ский ущерб скотоводству во многих странах Ла- Представления об эволюции трипаносоматид тинской Америки, Африки и Азии (Hoare 1972). и специфики их взаимоотношений с насекомыми Не меньшие потери несет сельское хозяйство неминуемо основываются на принятии той или стран Латинской Америки и Карибского бассейна иной модели происхождения этой уникальной из-за увядания культурных растений, в первую группы кинетопластид. Такие гипотезы, с одной очередь кофейных деревьев, кокосовых и маслич- стороны, позволяют включать в последующий ных пальм, которое вызывают размножающиеся анализ эволюционных процессов в качестве пер- во флоэме этих растений жгутиконосцы рода вичных хозяев трипаносоматид те или иные груп- Phytomonas. Эти заболевания часто принимают пы организмов, а с другой – оценивать, хотя и с форму эпифитотий (Dollet 1984, 1991). известными допущениями, вероятную продолжи- Однако патогенные виды составляют всего тельность коэволюционных процессов, связываю- около 2% от известного разнообразия предста- щих этих паразитических жгутиконосцев и их хо- вителей семейства (Hoare 1972; Сафьянова 1982; зяев. Проблема происхождения трипаносоматид Подлипаев 1990). Помимо них, известны более неоднократно и всесторонне обсуждалась в ли- 300 видов гетероксенных трипаносом, паразити- тературе в «домолекулярную» эпоху (Léger 1904; рующих в различных позвоночных животных, Wallace 1966; Hoar 1972; Baker 1974; Woo 1987; переносчиками которых служат членистоногие Фролов 1993; Vickerman 1994), однако интенсив- (главным образом насекомые) и пиявки, а также ные исследования филогении трипаносоматид около 200 видов моноксенных трипаносоматид, последнего десятилетия внесли в эту дискуссию паразитирующих в насекомых (Wallace 1966; ряд существенных изменений (Moreira et al. 2004; Hoare 1972; Подлипаев 1990). Здесь, правда, Hamilton et al. 2007; Flegontov et al. 2013; Maslov следует оговориться, что приводимые данные et al. 2013; Lukeš et al. 2014). Поскольку свобод- отражают знания «домолекулярного» периода в ноживущие трипаносоматиды науке неизвестны, изучении группы. Работы последнего десятиле- то предполагается, что предками трипаносоматид тия, основанные на использовании различных мо- были двужгутиковые кинетопластиды комменса- лекулярных маркеров при изучении филогении лы или паразиты их первичных хозяев (Фролов и разнообразия трипаносоматид, существенно и др. 2015а). Филогения кинетопластид (Рис. 1), подорвали доверие к двум «китам», на которых убеждает нас в том, что эта группа была исходно базировались прежние представления: «концеп- предрасположена к формированию паразитарных ции морфотипов» Гоара и Уоллеса и исторически ассоциаций с самыми разными представителя- сложившейся парадигмы «один хозяин – один ми эукариот – от простейших до позвоночных вид паразита» (Hoare and Wallace 1966; Votýpka животных (Simpson et al. 2006; Lukeš et al. 2014). et al. 2010; Maslov et al. 2013; Lukeš et al. 2014). Как мы уже подчеркивали, во всех отрядах этой Однако тенденции современных исследований в группы имеются примеры независимых перехо- целом не влияют на общий вывод о существен- дов их представителей к паразитическому образу ном преобладании непатогенных видов в составе жизни (Рис. 1), а численность паразитических семейства трипаносоматид. В этом смысле пока- кинетопластид многократно превышает число их зателен тот факт, что большинство исследований свободноживущих видов. фауны моноксенных трипаносоматид насекомых У кинетопластид известны два типа жиз- последнего времени гораздо чаще сопровождается ненных циклов: диксенный и моноксенный, и обнаружением новых видов, в том числе представ- возможность их реализации существенно раз- ляющих неизвестные ранее филогенетические ли- личается в разных группах хозяев. Гипотезы 18 А.О. Фролов Рис. 1. Кладограмма, отображающая консенсус современныx данных о филогенетических отношениях кинетопластид (по данным разных авторов: Nikolaev et al. 2003; Moreira et al. 2004; Simpson et al. 2004; Maslov et al. 2010; Deschamps et al. 2011; Hirose et al. 2012; Flegontov et al. 2013; Kostygov et al. 2014; Votýpka et al. 2014; Losev et al. 2015). Красным цветом на кладограмме выделены филогенетические линии паразитических кинетопластид. Шрифты: зеленый – внешняя группа, красный – диксенные паразиты, синий – моноксенные паразиты насекомых. анцестральной гетероксенности трипаносоматид криптобий и трипаносоматид (Рис. 1). Поскольку связывали их происхождение с двужгутиковыми, никаких иных примеров гетероксенных циклов паразитическими криптобиями и/или трипано- у двужгутиковых кинетопластид неизвестно, то плазмами. Представители тех и других демон- следует полагать, что предок трипаносоматид стрируют разнообразие форм паразитизма, в том обладал гомоксенным жизненным циклом. В числе и становление облигатного гетероксенного качестве своих хозяев представители современ- жизненного цикла у ряда кровепаразитов рыб ной фауны трипаносоматид широко используют (Woo 1987; Фролов 1993). Модель первичной пиявок, насекомых, позвоночных животных и гетероксенности трипаносом хорошо поддержи- высшие растения (Vickerman 1976, 1994). Ни вается сравнительно-морфологическими данны- растения, ни пиявки не могут рассматриваться ми, особенно сходством сложной организации как анцестральные группы хозяев
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Kornelia Skibińska
    Kornelia Skibi ńska https://orcid.org/0000-0002-5971-9373 Li L., Skibi ńska K ., Krzemi ński W., Wang B., Xiao Ch., Zhang Q 2021. A new March fly Protopenthetria skartveiti gen. nov. et sp. nov. (Diptera, Bibionidae, Plecinae) from mid-Cretaceous Burmese amber, Cretaceous Research, Volume 127, https://doi.org/10.1016/j.cretres.2021.104924 Giłka W., Zakrzewska M., Lukashevich E.D., Vorontsov D.D., Soszy ńska-Maj A., Skibi ńska K. , Cranston P.S. 2021. Wanted, tracked down and identified: Mesozoic non-biting midges of the subfamily Chironominae (Chironomidae, Diptera), Zoological Journal of the Linnean Society, zlab020, https://doi.org/10.1093/zoolinnean/zlab020 Šev čík J., Skartveit J., Krzemi ński W., Skibi ńska K. 2021. A Peculiar New Genus of Bibionomorpha (Diptera) with Brachycera-Like Modification of Antennae from Mid-Cretaceous Amber of Myanmar. Insects 12,364, https://doi.org/10.3390/insects12040364 Skibi ńska K ., Albrycht M., Zhang Q., Giłka W., Zakrzewska M., Krzemi ński W. 2021 . Diversity of the Fossil Genus Palaeoglaesum Wagner (Diptera, Psychodidae) in the Upper Cretaceous Amber of Myanmar. Insects . 12, 247, https://doi.org/10.3390/insects12030247 Curler G.R., Skibi ńska K . 2021. Paleotelmatoscopus , a proposed new genus for some fossil moth flies (Diptera, Psychodidae, Psychodinae) in Eocene Baltic amber, with description of a new species. Zootaxa. 4927 (4): 505–524, https://doi.org/10.11646/zootaxa.4927.4.2 Kope ć K., Skibi ńska K ., Soszy ńska-Maj A. 2020. Two new Mesozoic species of Tipulomorpha (Diptera) from the Teete locality, Russia. Palaeoentomology 003 (5): 466–472, https://doi.org/10.11646/palaeoentomology.3.5.4 Soszy ńska-Maj A., Skibi ńska K ., Kope ć K.
    [Show full text]
  • Diptera: Tanyderidae) from Southern Chile, with a First Description of a Male and Key to Extant Genera of the Family
    Aquatic Insects International Journal of Freshwater Entomology ISSN: 0165-0424 (Print) 1744-4152 (Online) Journal homepage: http://www.tandfonline.com/loi/naqi20 A new species of Neoderus Alexander, 1927 (Diptera: Tanyderidae) from southern Chile, with a first description of a male and key to extant genera of the family R. Isaí Madriz, Anna Astorga, Targe Lindsay & Gregory W. Courtney To cite this article: R. Isaí Madriz, Anna Astorga, Targe Lindsay & Gregory W. Courtney (2018): A new species of Neoderus Alexander, 1927 (Diptera: Tanyderidae) from southern Chile, with a first description of a male and key to extant genera of the family, Aquatic Insects, DOI: 10.1080/01650424.2018.1456665 To link to this article: https://doi.org/10.1080/01650424.2018.1456665 Published online: 04 Jun 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=naqi20 AQUATIC INSECTS, 2018 https://doi.org/10.1080/01650424.2018.1456665 A new species of Neoderus Alexander, 1927 (Diptera: Tanyderidae) from southern Chile, with a first description of a male and key to extant genera of the family R. Isaı Madriza, Anna Astorgab,c, Targe Lindsayd and Gregory W. Courtneya aDepartment of Entomology, Iowa State University, Ames, IA, USA; bCentro de Investigaciones en Ecosistemas de la Patagonia, Coyhaique, Chile; cInstitute of Ecology and Biodiversity, Pontificia Universidad Catolica de Chile, Santiago, Chile; dJasper Ridge Biological Preserve, Stanford University, Stanford, CA, USA ABSTRACT ARTICLE HISTORY Neoderus Alexander, 1927 (Diptera: Tanyderidae) is revised to Received 29 November 2017 include a new species, Neoderus chonos Madriz, sp.
    [Show full text]
  • Lower Cretaceous)
    Nannotanyderus ansorgei sp. n., the first member of the family Tanyderidae from Lebanese amber (Lower Cretaceous) Wiesław Krzemińskia, Dany Azarb,* and Kornelia Skibińskaa aInstitute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland bLebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box 26110217, Fanar–Matn, Lebanon *Corresponding author, e-mail: [email protected] Abstract A new species, Nannotanyderus ansorgei, belonging to Tanyderidae (Diptera, Nematocera), is described and figured from the Lower Cretaceous amber of Lebanon. This is a tiny species, with very particular male genitalia and with wing venation similar to genus Nannotanyderus krzeminskii Ansorge, 1994 from Lower Jurassic (Toarcian) of Germany. For the first time a male specimen of the species Dacochile microsoma Poinar & Brown, 2004 is illustrated and its genitalia described. Keywords Diptera; Tanyderidae; fossil; Lower Cretaceous; Lebanese amber; new taxa; Nannotanyderus ansorgei; Dacochile microsoma Introduction Tanyderidae, or primitive crane flies, is a small, cosmopolitan family of mostly aquatic flies, with about 36 known living species world-wide. The immature stages of the extant species are aquatic to semiaquatic including association with wet sandy soil and the outer layers of submerged rotting logs in streams. Adult males sometimes congregate in large swarms in eve- nings; spending the daylight hours among the riparian vegetation near the borders of streams. Little is known about the biology of these unusual flies. Tanyderidae are rather rarely found as fossils. Up till now, representa- tive of six genera have been described, i.e., Macrochile Loew, 1850 (two species from Baltic amber (Loew 1850; Alexander 1931; Podenas 1997)); <UN> <UN> 132 wiesław krzemiński et al.
    [Show full text]
  • Structure of the Coxa and Homeosis of Legs in Nematocera (Insecta: Diptera)
    Acta Zoologica (Stockholm) 85: 131–148 (April 2004) StructureBlackwell Publishing, Ltd. of the coxa and homeosis of legs in Nematocera (Insecta: Diptera) Leonid Frantsevich Abstract Schmalhausen-Institute of Zoology, Frantsevich L. 2004. Structure of the coxa and homeosis of legs in Nematocera Kiev-30, Ukraine 01601 (Insecta: Diptera). — Acta Zoologica (Stockholm) 85: 131–148 Construction of the middle and hind coxae was investigated in 95 species of Keywords: 30 nematoceran families. As a rule, the middle coxa contains a separate coxite, Insect locomotion – Homeotic mutations the mediocoxite, articulated to the sternal process. In most families, this coxite – Diptera – Nematocera is movably articulated to the eucoxite and to the distocoxite area; the coxa is Accepted for publication: radially split twice. Some groups are characterized by a single split. 1 July 2004 The coxa in flies is restricted in its rotation owing to a partial junction either between the meron and the pleurite or between the eucoxite and the meropleurite. Hence the coxa is fastened to the thorax not only by two pivots (to the pleural ridge and the sternal process), but at the junction named above. Rotation is impossible without deformations; the role of hinges between coxites is to absorb deformations. This adaptive principle is confirmed by physical modelling. Middle coxae of limoniid tribes Eriopterini and Molophilini are compact, constructed by the template of hind coxae. On the contrary, hind coxae in all families of Mycetophiloidea and in Psychodidae s.l. are constructed like middle ones, with the separate mediocoxite, centrally suspended at the sternal process. These cases are considered as homeotic mutations, substituting one structure with a no less efficient one.
    [Show full text]
  • Read PDF \\ Guide to the Insects of Connecticut, Vol. 6: the Diptera
    MYX7AHUUL3ON / Doc \ Guide to the Insects of Connecticut, Vol. 6: The Diptera or True... Guide to th e Insects of Connecticut, V ol. 6: Th e Diptera or True Flies of Connecticut; First Fascicle; External Morph ology; Key to Families; Tanyderidae, Ptych opteridae, Trich oceridae, A nisopodidae, Tipulidae (Classic Reprint) (Paperback) Filesize: 3.87 MB Reviews This is the greatest book i have got read through till now. I could possibly comprehended almost everything out of this published e book. Your daily life span will probably be enhance the instant you total looking at this book. (Bernadette Baumbach) DISCLAIMER | DMCA US1ZUKEYBFUS < Book \\ Guide to the Insects of Connecticut, Vol. 6: The Diptera or True... GUIDE TO THE INSECTS OF CONNECTICUT, VOL. 6: THE DIPTERA OR TRUE FLIES OF CONNECTICUT; FIRST FASCICLE; EXTERNAL MORPHOLOGY; KEY TO FAMILIES; TANYDERIDAE, PTYCHOPTERIDAE, TRICHOCERIDAE, ANISOPODIDAE, TIPULIDAE (CLASSIC REPRINT) (PAPERBACK) To save Guide to the Insects of Connecticut, Vol. 6: The Diptera or True Flies of Connecticut; First Fascicle; External Morphology; Key to Families; Tanyderidae, Ptychopteridae, Trichoceridae, Anisopodidae, Tipulidae (Classic Reprint) (Paperback) PDF, remember to refer to the web link under and download the document or gain access to other information that are in conjuction with GUIDE TO THE INSECTS OF CONNECTICUT, VOL. 6: THE DIPTERA OR TRUE FLIES OF CONNECTICUT; FIRST FASCICLE; EXTERNAL MORPHOLOGY; KEY TO FAMILIES; TANYDERIDAE, PTYCHOPTERIDAE, TRICHOCERIDAE, ANISOPODIDAE, TIPULIDAE (CLASSIC REPRINT)
    [Show full text]
  • The Wing Stalk in Diptera, with Some Notes on the Higher-Level Phylogeny of the Order
    POINT OF VIEW Eur. J. Entomol. 105: 27–33, 2008 http://www.eje.cz/scripts/viewabstract.php?abstract=1297 ISSN 1210-5759 (print), 1802-8829 (online) The wing stalk in Diptera, with some notes on the higher-level phylogeny of the order JAROSLAV STARÝ Department of Zoology and Laboratory of Ornithology, Faculty of Science of the Palacký University, tĜ. Svobody 26, 771 46 Olomouc, Czech Republic; e-mail: [email protected] Key words. Diptera, morphology, wing stalk, higher-level phylogeny Abstract. The wing stalk in Diptera is examined, and its structures are re-evaluated and re-interpreted. The non-homology of A2 in Tipulomorpha and “A2” in other Diptera is claimed. Some notes are presented on the higher-level phylogeny of Diptera, especially those concerning Tipulomorpha. The family Trichoceridae is restored among Tipulomorpha, and the Tipulomorpha are re-affirmed as the sister group of the remaining Diptera. The clade Anisopodidae + Culicomorpha + Bibionomorpha is suggested as the sister group of Brachycera. INTRODUCTION chodomorpha, and particular taxa are treated at family Hennig (1968) published a comprehensive treatment of level. The infraorders accepted are conceived here as fol- the evolution of the wing base in Diptera, i.e., the com- lows: Tipulomorpha: Trichoceridae, Limoniidae, Pedicii- plex of features within the so-called wing stalk, mainly dae, Tipulidae, Cylindrotomidae; Culicomorpha: Simuli- idae, Dixidae, Culicidae, Thaumaleidae, Ceratopogon- the reduction of A2 and the development of the alula. He idae, Chironomidae; Bibionomorpha: Cecidomyiidae, concluded that A2 is reduced in Diptera other than Tipulo- morpha and only retained as a more or less sclerotised, Bibionidae, Axymyiidae, Mycetophilidae s.
    [Show full text]
  • Ceny Bursztynu Bałtyckiego If Not Amber, Then What? Fakes at the IAA Amber Laboratory in 2016 13 Amber Prices Mody(Fikacje) Bursztynu Nowelizacja Prawa Geologicznego
    / Gdańsk / Poland / / AMBEREXPO / 2017 ambermart 18th International Amber Fair 31.08–02.09.2017 ambermart.pl 2018 amberif 25th International Fair of Amber, Jewellery and Gemstones 21–24.03.2018 amberif.pl jewellery by Jola & Andrzej Kupniewscy fashion by Pudu Joanna Weyna hat by Beata Miłogrodzka SPIS TREŚCI | TABLE OF CONTENTS / Gdańsk / Poland / / AMBEREXPO / LUDZIE BURSZTYNU | AMBER PERSONALITIES PROMOCJA BURSZTYNU | AMBER PROMOTION Bursztynnik Roku 2016 - Zoja Kostiaszowa S&A i najpiękniejsze Polki 4 Amber Personality of the Year 2016 - Zoja Kostiashova 36 S&A and the most beautiful Polish women DIAGNOSTYKA BURSZTYNU | AMBER DIAGNOSTIC Wiesław GierłowskI - Bursztynnik Stulecia. Wspomnienie 6 Amber personality of all the time. Posthumous tribute Gemmologiczne badania nad bursztynem i innymi żywicami kopalnymi w Państwowym Centrum Gemmologicznym Ukrainy RYNEK BURSZTYNU | AMBER MARKET 38 Gemological study of amber and other fossil resins in State Gemological Center of Ukraine Norma bursztynowa – zakończenie prac nad projektem 12 The Amber Standard—work ends on draft Jeśli nie bursztyn to co? Imitacje w Laboratorium Bursztynu MSB 42 w 2016 roku Ceny bursztynu bałtyckiego If not amber, then what? Fakes at the IAA Amber Laboratory in 2016 13 Amber prices Mody(fikacje) bursztynu Nowelizacja prawa geologicznego. Stanowisko MSB 44 Fashioning Amber 14 New version of the Polish Geology Law. The IAA’s position WYDARZENIA | EVENTS 16 MSB na targach w 2016 IAA at a trade fairs in 2016 46 The Fullmoon of GEMUnity (GIT2016) Piąta Międzynarodowa Konferencja
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]
  • Diptera, Psychodidae) in the Upper Cretaceous Amber of Myanmar
    insects Article Diversity of the Fossil Genus Palaeoglaesum Wagner (Diptera, Psychodidae) in the Upper Cretaceous Amber of Myanmar Kornelia Skibi ´nska 1,* , Marzena Albrycht 2 , Qingqing Zhang 3,4, Wojciech Giłka 5 , Marta Zakrzewska 5 and Wiesław Krzemi ´nski 1 1 Institute of Systematics and Evolution of Animals Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland; [email protected] 2 Institute of Biology, Pedagogical University of Kraków, Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] 3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; [email protected] 4 Institute of Geosciences, University of Bonn, 53115 Bonn, Germany 5 Laboratory of Systematic Zoology, Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gda´nsk,Wita Stwosza 59, 80-308 Gda´nsk,Poland; [email protected] (W.G.); [email protected] (M.Z.) * Correspondence: [email protected] Simple Summary: Bruchomyiinae is one of seven subfamilies of Psychodidae. In the contemporary fauna, this small, relict subfamily occurs mainly in tropical and sub-tropical regions. Examination of inclusions preserved in the Upper Cretaceous amber of Myanmar (also known as Burmese amber), which is almost 100 mya, shows that this subfamily was abundant during the Cretaceous period. The extinct genus Palaeoglaesum is known only from this fossil resin. Moreover, its numerous inclusions Citation: Skibi´nska,K.; Albrycht, M.; and high diversification confirm that the Mesozoic was the stage of the early evolution and radiation Zhang, Q.; Giłka, W.; Zakrzewska, M.; of Psychodidae.
    [Show full text]
  • KEY to DIPTERA FAMILIES — ADULTS 12 Stephen A
    SURICATA 4 (2017) 267 KEY TO DIPTERA FAMILIES — ADULTS 12 Stephen A. Marshall, Ashley H. Kirk-Spriggs, Burgert S. Muller, Steven M. Paiero, Tiffany Yau and Morgan D. Jackson Introduction them”. This tongue-in-cheek witticism contains a grain of truth, as specialists usually define their taxa on the basis of combina- Family-level identifications are critical to understanding, re- tions of subtle characters inappropriate for general identifica- searching, or communicating about flies. Armed with a family tion keys and diagnose them more on the basis of experience name it is possible to make useful generalisations about their and general appearance than on precise combinations of eas- importance and biology, it is easy to search for further informa- ily visible characters. The resulting difficulties are exacerbated tion using the family name as a search term and it is straight- when traditionally recognised and easily diagnosed families are forward to use the name as a doorway to more specific or broken up into multiple families on the basis of phylogenet- generic-level treatments, such as the chapters included in this ic analyses, without an emphasis on practical diagnosis of the Manual. newly recognised families. These problems, combined with the historical difficulty of adequately illustrating published identifi- Many flies, such as mosquitoes (Culicidae; see Chapter 31), cation keys, have led to a widespread misconception that flies horse flies (Tabanidae; see Chapter 39) and most robber flies are difficult to identify to the familial level. The current key is (Asilidae; see Chapter 48), flower flies (Syrphidae; see Chap- intended to be as easy to use as possible and thus includes ex- ter 60) and bee flies (Bombyliidae; see Chapter 45), are in- tensive illustrations and emphasises relatively simple external stantly recognisable to the family level, based on their general characters.
    [Show full text]
  • Fly Times Issue 64
    FLY TIMES ISSUE 64, Spring, 2020 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 738-6671 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! This issue is brought to you during the Covid-19 pandemic, with many of you likely cooped up at home, with insect collections worldwide closed for business! Perhaps for this reason this issue is pretty heavy, not just with articles but with images. There were many submissions to the Flies are Amazing! section and the Dipterists Lairs! I hope you enjoy them! Just to touch on an error I made in the Fall issue’s introduction… In outlining the change to “Spring” and “Fall” issues, instead of April and October issues, I said “But rest assured, I WILL NOT produce Fall issues after 20 December! Nor Spring issues after 20 March!” But of course I meant no Spring issues after 20 June! Instead of hitting the end of spring, I used the beginning. Oh well… Thank you to everyone for sending in such interesting articles! I encourage all of you to consider contributing articles that may be of interest to the Diptera community, or for larger manuscripts, the Fly Times Supplement series. Fly Times offers a great forum to report on research activities, to make specimen requests, to report interesting observations about flies or new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the digital images you wish to provide.
    [Show full text]