Respiratory Syncytial Virus; Itraq: Isobaric Tags for Relative and Absolute Quantification; Deps: Differentially Expressed Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Respiratory Syncytial Virus; Itraq: Isobaric Tags for Relative and Absolute Quantification; Deps: Differentially Expressed Proteins Figure S1. Experimental design and schematic workflow diagram. RSV: respiratory syncytial virus; iTRAQ: isobaric tags for relative and absolute quantification; DEPs: differentially expressed proteins. 2 Figure S2. Protein-protein interaction (PPI) network and identification of Molecular Complex Detection (MCODE) components of the union set differentially expressed proteins (DEPs) from respiratory syncytial virus (RSV) infection vs control. A, PPI network of DEPs from the union set of RSV infection of acute phase and convalescence phase (ALL-DEPs). B, Molecular complex detection (MCODEs) identification in the PPI network. 3 Table S1. Identification of differentially expressed proteins between RSV and healthy control by the iTRAQ technique. Convalescence phase vs Acute phase vs Control Control N Citable Gene Mass(KDa) Species Name %Cov Peptides Fold CV P value Fold CV P value Accession Name (95) (95%) change change Immunoglobulin alpha-2 heavy chain OS=Homo sapiens 1 P0DOX2 IGG1 48.934 HUMAN 53.630 76 0.36 0.405 0.010343 0.299 0.263 0.000541 OX=9606 PE=1 SV=2 Apolipoprotein A-IV OS=Homo sapiens OX=9606 2 P06727 APOA4 45.399 HUMAN 85.610 124 0.26 0.261 0.000346 0.340 0.201 0.000299 GN=APOA4 PE=1 SV=3 Keratin, type I cytoskeletal 10 OS=Homo sapiens 3 P13645 KRT10 58.827 HUMAN 23.290 16 0.37 0.155 0.000117 0.360 0.769 0.010179 OX=9606 GN=KRT10 PE=1 SV=6 Apolipoprotein C-I OS=Homo sapiens OX=9606 4 P02654 APOC1 9.332 HUMAN 51.810 17 0.88 0.193 0.167924 0.403 0.241 0.001019 GN=APOC1 PE=1 SV=1 Fibronectin OS=Homo sapiens OX=9606 GN=FN1 PE=1 5 P02751 FN1 262.623 HUMAN 59.560 251 0.47 0.097 0.000052 0.408 0.136 0.000095 SV=4 Immunoglobulin heavy constant gamma 4 OS=Homo 6 P01861 IGHG4 35.940 HUMAN 71.870 142 0.24 0.214 0.000141 0.412 0.099 0.000037 sapiens OX=9606 GN=IGHG4 PE=1 SV=1 Dipeptidyl peptidase 4 OS=Homo sapiens OX=9606 7 P27487 DPP4 88.278 HUMAN 6.789 4 0.44 0.210 0.000893 0.413 0.134 0.000128 GN=DPP4 PE=1 SV=2 Keratin, type II cytoskeletal 2 epidermal OS=Homo 8 P35908 KRT2 65.433 HUMAN 17.530 10 0.50 0.383 0.007028 0.422 0.683 0.013008 sapiens OX=9606 GN=KRT2 PE=1 SV=2 Beta-Ala-His dipeptidase OS=Homo sapiens OX=9606 9 Q96KN2 CNDP1 56.706 HUMAN 27.420 12 0.29 0.062 0.000001 0.452 0.100 0.000071 GN=CNDP1 PE=1 SV=4 Coagulation factor XIII A chain OS=Homo sapiens 10 P00488 F13A1 83.267 HUMAN 17.080 12 0.47 0.245 0.001485 0.457 0.106 0.000077 OX=9606 GN=F13A1 PE=1 SV=4 Alkaline phosphatase, tissue-nonspecific isozyme 11 P05186 ALPL 57.304 HUMAN 6.107 3 0.43 0.331 0.010691 0.460 0.215 0.002192 OS=Homo sapiens OX=9606 GN=ALPL PE=1 SV=4 Zinc-alpha-2-glycoprotein OS=Homo sapiens OX=9606 12 P25311 AZGP1 34.259 HUMAN 57.720 44 0.44 0.154 0.000262 0.463 0.392 0.006060 GN=AZGP1 PE=1 SV=2 Phospholipid transfer protein OS=Homo sapiens 13 P55058 PLTP 54.739 HUMAN 29.210 15 0.69 0.138 0.003898 0.485 0.246 0.004244 OX=9606 GN=PLTP PE=1 SV=1 Prenylcysteine oxidase 1 OS=Homo sapiens OX=9606 14 Q9UHG3 PCYOX1 56.640 HUMAN 20.990 10 0.57 0.043 0.000008 0.522 0.116 0.000220 GN=PCYOX1 PE=1 SV=3 Keratin, type II cytoskeletal 1 OS=Homo sapiens 15 P04264 KRT1 66.039 HUMAN 28.730 24 0.50 0.163 0.000596 0.531 0.424 0.015946 OX=9606 GN=KRT1 PE=1 SV=6 Phosphatidylinositol-glycan-specific phospholipase D 16 P80108 GPLD1 92.336 HUMAN 23.810 20 0.79 0.134 0.012434 0.541 0.136 0.000460 OS=Homo sapiens OX=9606 GN=GPLD1 PE=1 SV=3 Cholesteryl ester transfer protein OS=Homo sapiens 17 P11597 CETP 54.756 HUMAN 13.790 6 0.54 0.453 0.016114 0.562 0.361 0.010559 OX=9606 GN=CETP PE=1 SV=2 Cadherin-13 OS=Homo sapiens OX=9606 GN=CDH13 18 P55290 CDH13 78.286 HUMAN 7.293 4 0.58 0.282 0.006765 0.574 0.230 0.003549 PE=1 SV=1 Serum paraoxonase/arylesterase 1 OS=Homo sapiens 19 P27169 PON1 39.731 HUMAN 70.700 37 0.58 0.380 0.014898 0.576 0.399 0.017719 OX=9606 GN=PON1 PE=1 SV=3 Contactin-1 OS=Homo sapiens OX=9606 GN=CNTN1 20 Q12860 CNTN1 113.319 HUMAN 1.965 2 0.57 0.076 0.000659 0.579 0.065 0.000452 PE=1 SV=1 Tetranectin OS=Homo sapiens OX=9606 GN=CLEC3B 21 P05452 CLEC3B 22.537 HUMAN 68.810 20 0.56 0.124 0.000424 0.583 0.202 0.004111 PE=1 SV=3 Cadherin-5 OS=Homo sapiens OX=9606 GN=CDH5 22 P33151 CDH5 87.528 HUMAN 16.200 13 0.52 0.088 0.000092 0.584 0.169 0.002575 PE=1 SV=5 Ficolin-2 OS=Homo sapiens OX=9606 GN=FCN2 PE=1 23 Q15485 FCN2 34.001 HUMAN 31.310 14 0.47 0.527 0.011592 0.585 0.297 0.008559 SV=2 Hepatocyte growth factor-like protein OS=Homo sapiens 24 P26927 MST1 80.319 HUMAN 6.188 5 0.81 0.056 0.000912 0.591 0.094 0.000226 OX=9606 GN=MST1 PE=1 SV=2 SERPIN Antithrombin-III OS=Homo sapiens OX=9606 25 P01008 52.602 HUMAN 65.950 79 0.52 0.165 0.000935 0.593 0.187 0.003451 C1 GN=SERPINC1 PE=1 SV=1 C-type mannose receptor 2 OS=Homo sapiens OX=9606 26 Q9UBG0 MRC2 166.673 HUMAN 0.879 1 0.69 0.037 0.000285 0.603 0.017 0.000010 GN=MRC2 PE=1 SV=2 Lumican OS=Homo sapiens OX=9606 GN=LUM PE=1 27 P51884 LUM 38.429 HUMAN 49.110 28 0.61 0.058 0.000044 0.604 0.128 0.000899 SV=2 Gelsolin OS=Homo sapiens OX=9606 GN=GSN PE=1 28 P06396 GSN 85.697 HUMAN 50.510 48 0.93 0.102 0.179935 0.615 0.072 0.000108 SV=1 4 Alpha-N-acetylglucosaminidase OS=Homo sapiens 29 P54802 NAGLU 82.265 HUMAN 10.090 5 0.58 0.475 0.082506 0.620 0.143 0.006640 OX=9606 GN=NAGLU PE=1 SV=2 Serum paraoxonase/lactonase 3 OS=Homo sapiens 30 Q15166 PON3 39.607 HUMAN 22.600 8 0.65 0.275 0.013967 0.624 0.292 0.011705 OX=9606 GN=PON3 PE=1 SV=3 Apolipoprotein C-II OS=Homo sapiens OX=9606 31 P02655 APOC2 11.284 HUMAN 71.290 26 0.95 0.156 0.453917 0.626 0.324 0.020157 GN=APOC2 PE=1 SV=1 Cartilage acidic protein 1 OS=Homo sapiens OX=9606 32 Q9NQ79 CRTAC1 71.420 HUMAN 14.980 8 0.73 0.187 0.013723 0.627 0.269 0.010121 GN=CRTAC1 PE=1 SV=2 Kinetochore-associated protein 1 OS=Homo sapiens 33 P50748 KNTC1 250.746 HUMAN 0.996 4 0.73 0.511 0.216387 0.633 0.508 0.130247 OX=9606 GN=KNTC1 PE=1 SV=1 Cartilage oligomeric matrix protein OS=Homo sapiens 34 P49747 COMP 82.860 HUMAN 14.800 9 0.74 0.086 0.001458 0.634 0.124 0.001043 OX=9606 GN=COMP PE=1 SV=2 Xaa-Pro dipeptidase OS=Homo sapiens OX=9606 35 P12955 PEPD 54.548 HUMAN 16.020 6 0.69 0.209 0.010839 0.641 0.105 0.000648 GN=PEPD PE=1 SV=3 Serum amyloid A-4 protein OS=Homo sapiens OX=9606 36 P35542 SAA4 14.747 HUMAN 62.310 27 1.12 0.151 0.162591 0.641 0.124 0.001350 GN=SAA4 PE=1 SV=2 Collagen alpha-1(VI) chain OS=Homo sapiens OX=9606 37 P12109 COL6A1 108.529 HUMAN 5.545 4 0.67 0.328 0.036514 0.645 0.308 0.021851 GN=COL6A1 PE=1 SV=3 Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo 38 P19823 ITIH2 106.463 HUMAN 49.680 114 0.49 0.270 0.003998 0.647 0.263 0.020374 sapiens OX=9606 GN=ITIH2 PE=1 SV=2 Attractin OS=Homo sapiens OX=9606 GN=ATRN PE=1 39 O75882 ATRN 158.536 HUMAN 13.300 29 0.64 0.114 0.000896 0.653 0.197 0.006522 SV=2 Tenascin-X OS=Homo sapiens OX=9606 GN=TNXB 40 P22105 TNXB 458.386 HUMAN 11.800 31 0.68 0.099 0.000768 0.653 0.096 0.000544 PE=1 SV=5 Immunoglobulin kappa constant OS=Homo sapiens 41 P01834 IGKC 11.765 HUMAN 91.590 126 0.49 0.767 0.040814 0.655 0.305 0.018253 OX=9606 GN=IGKC PE=1 SV=2 Basement membrane-specific heparan sulfate 42 P98160 HSPG2 468.826 HUMAN proteoglycan core protein OS=Homo sapiens OX=9606 1.959 7 0.61 0.082 0.000159 0.667 0.080 0.000342 GN=HSPG2 PE=1 SV=4 Pantetheinase OS=Homo sapiens OX=9606 GN=VNN1 43 O95497 VNN1 57.011 HUMAN 5.068 2 0.64 0.263 0.010749 0.679 0.199 0.008935 PE=1 SV=2 Dopamine beta-hydroxylase OS=Homo sapiens OX=9606 44 P09172 DBH 69.064 HUMAN 8.428 4 0.73 0.054 0.001394 0.685 0.076 0.002076 GN=DBH PE=1 SV=3 Extracellular matrix protein 1 OS=Homo sapiens 45 Q16610 ECM1 60.674 HUMAN 23.150 11 0.76 0.181 0.022288 0.687 0.227 0.013985 OX=9606 GN=ECM1 PE=1 SV=2 Dermatopontin OS=Homo sapiens OX=9606 GN=DPT 46 Q07507 DPT 24.005 HUMAN 5.473 1 0.70 0.116 0.008301 0.693 0.065 0.001452 PE=1 SV=2 Carboxypeptidase B2 OS=Homo sapiens OX=9606 47 Q96IY4 CPB2 48.424 HUMAN 21.990 10 0.84 0.148 0.042691 0.699 0.104 0.001324 GN=CPB2 PE=1 SV=2 A0A0C4D IGKV3D- Immunoglobulin kappa variable 3D-20 OS=Homo sapiens 48 12.515 HUMAN 65.520 38 0.31 0.594 0.014160 0.701 0.314 0.033777 H25 20 OX=9606 GN=IGKV3D-20 PE=3 SV=1 Inter-alpha-trypsin inhibitor heavy chain H1 OS=Homo 49 P19827 ITIH1 101.389 HUMAN 52.800 109 0.43 0.641 0.031151 0.701 0.285 0.035996 sapiens OX=9606 GN=ITIH1 PE=1 SV=3 ICOS ligand OS=Homo sapiens OX=9606 GN=ICOSLG 50 O75144 ICOSLG 33.349 HUMAN 6.623 2 0.73 0.140 0.005359 0.703 0.148 0.004441 PE=1 SV=2 Lymphatic vessel endothelial hyaluronic acid receptor 1 51 Q9Y5Y7 LYVE1 35.213 HUMAN 8.075 2 0.79 0.065 0.001261 0.707 0.049 0.000094 OS=Homo sapiens OX=9606 GN=LYVE1 PE=1 SV=2 Vitamin K-dependent protein C OS=Homo sapiens 52 P04070 PROC 52.071 HUMAN 24.510 12 0.62 0.077 0.000159 0.723 0.174 0.008954 OX=9606 GN=PROC PE=1 SV=1 Integrin beta-1 OS=Homo sapiens OX=9606 GN=ITGB1 53 P05556 ITGB1 88.415 HUMAN 3.759 3 0.87 0.049 0.003079 0.724 0.123 0.005504 PE=1 SV=2 Cadherin-6 OS=Homo sapiens OX=9606 GN=CDH6 54 P55285 CDH6 88.308 HUMAN 1.013 1 0.75 0.072 0.003883 0.727 0.060 0.001790 PE=1 SV=1 Neural cell adhesion molecule 1 OS=Homo sapiens 55 P13591 NCAM1 94.574 HUMAN 15.500 10 0.60 0.319 0.011286 0.730 0.184 0.012325 OX=9606 GN=NCAM1 PE=1 SV=3 Endoplasmic reticulum aminopeptidase 2 OS=Homo 56 Q6P179 ERAP2 110.461 HUMAN 1.042 1 0.75 0.143 0.027262 0.731 0.151 0.023722 sapiens OX=9606 GN=ERAP2 PE=1 SV=2 A0A0C4D Immunoglobulin kappa variable 1-8 OS=Homo sapiens 57 IGKV1-8 12.537 HUMAN 55.650 18 0.83 0.158 0.057110 0.735 0.176 0.016647 H67 OX=9606 GN=IGKV1-8 PE=3 SV=1 Apolipoprotein C-III OS=Homo sapiens OX=9606 58 P02656 APOC3 10.852 HUMAN 77.780 55 1.34 0.201 0.038352 0.735 0.208 0.021184 GN=APOC3 PE=1 SV=1 Plexin-B2 OS=Homo sapiens OX=9606 GN=PLXNB2
Recommended publications
  • High Definition Analyses of Single Cohort, Whole Genome Sequencing Data Provides a Direct Route
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.28.21262560; this version posted September 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. High definition analyses of single cohort, whole genome sequencing data provides a direct route to defining sub-phenotypes and personalising medicine Joyce KE1,2, Onabanjo E3, Brownlow S3, Nur F3, Olupona KO3, Fakayode K3, Sroya M4, Thomas G4, Ferguson T3, Redhead J3, Millar CM3,5, Cooper N3,5, Layton DM3,5, Boardman-Pretty F6, Caulfield MJ6,7, Genomics England Research Consortium6, Shovlin CL2,3,8* 1Imperial College School of Medicine, Imperial College, London UK; 2Genomics England Respiratory Clinical Interpretation Partnership (GeCIP); 3West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London UK; 4Department of Surgery and Cancer, Imperial College London, UK; 5Centre for Haematology, Department of Immunology and Inflammation, Imperial College London UK; 6Genomics England, UK; 7 William Harvey Research Institute, Queen Mary University of London, London UK; 8National Heart and Lung Institute, Imperial College London UK. Word Count 4778 Abstract 150 Figures – 5 Data Supplement File- 1 *Corresponding Author: Claire L. Shovlin PhD FRCP, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK. Email [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Table S1. Identified Proteins with Exclusive Expression in Cerebellum of Rats of Control, 10Mg F/L and 50Mg F/L Groups
    Table S1. Identified proteins with exclusive expression in cerebellum of rats of control, 10mg F/L and 50mg F/L groups. Accession PLGS Protein Name Group IDa Score Q3TXS7 26S proteasome non-ATPase regulatory subunit 1 435 Control Q9CQX8 28S ribosomal protein S36_ mitochondrial 197 Control P52760 2-iminobutanoate/2-iminopropanoate deaminase 315 Control Q60597 2-oxoglutarate dehydrogenase_ mitochondrial 67 Control P24815 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1 84 Control Q99L13 3-hydroxyisobutyrate dehydrogenase_ mitochondrial 114 Control P61922 4-aminobutyrate aminotransferase_ mitochondrial 470 Control P10852 4F2 cell-surface antigen heavy chain 220 Control Q8K010 5-oxoprolinase 197 Control P47955 60S acidic ribosomal protein P1 190 Control P70266 6-phosphofructo-2-kinase/fructose-2_6-bisphosphatase 1 113 Control Q8QZT1 Acetyl-CoA acetyltransferase_ mitochondrial 402 Control Q9R0Y5 Adenylate kinase isoenzyme 1 623 Control Q80TS3 Adhesion G protein-coupled receptor L3 59 Control B7ZCC9 Adhesion G-protein coupled receptor G4 139 Control Q6P5E6 ADP-ribosylation factor-binding protein GGA2 45 Control E9Q394 A-kinase anchor protein 13 60 Control Q80Y20 Alkylated DNA repair protein alkB homolog 8 111 Control P07758 Alpha-1-antitrypsin 1-1 78 Control P22599 Alpha-1-antitrypsin 1-2 78 Control Q00896 Alpha-1-antitrypsin 1-3 78 Control Q00897 Alpha-1-antitrypsin 1-4 78 Control P57780 Alpha-actinin-4 58 Control Q9QYC0 Alpha-adducin 270 Control Q9DB05 Alpha-soluble NSF attachment protein 156 Control Q6PAM1 Alpha-taxilin 161
    [Show full text]
  • Genetic Colocalization Atlas Points to Common Regulatory Sites and Genes for Hematopoietic Traits and Hematopoietic Contributions to Disease Phenotypes Christopher S
    Thom and Voight BMC Medical Genomics (2020) 13:89 https://doi.org/10.1186/s12920-020-00742-9 RESEARCH ARTICLE Open Access Genetic colocalization atlas points to common regulatory sites and genes for hematopoietic traits and hematopoietic contributions to disease phenotypes Christopher S. Thom1,2,3,4 and Benjamin F. Voight2,3,4* Abstract Background: Genetic associations link hematopoietic traits and disease end-points, but most causal variants and genes underlying these relationships are unknown. Here, we used genetic colocalization to nominate loci and genes related to shared genetic signal for hematopoietic, cardiovascular, autoimmune, neuropsychiatric, and cancer phenotypes. Methods: Our aim was to identify colocalization sites for human traits among established genome-wide significant loci. Using genome-wide association study (GWAS) summary statistics, we determined loci where multiple traits colocalized at a false discovery rate < 5%. We then identified quantitative trait loci among colocalization sites to highlight related genes. In addition, we used Mendelian randomization analysis to further investigate certain trait relationships genome-wide. Results: Our findings recapitulated developmental hematopoietic lineage relationships, identified loci that linked traits with causal genetic relationships, and revealed novel trait associations. Out of 2706 loci with genome-wide significant signal for at least 1 blood trait, we identified 1779 unique sites (66%) with shared genetic signal for 2+ hematologic traits. We could assign some sites to specific developmental cell types during hematopoiesis based on affected traits, including those likely to impact hematopoietic progenitor cells and/or megakaryocyte-erythroid progenitor cells. Through an expanded analysis of 70 human traits, we defined 2+ colocalizing traits at 2123 loci from an analysis of 9852 sites (22%) containing genome-wide significant signal for at least 1 GWAS trait.
    [Show full text]
  • Additional File 3.Pdf
    ************ globins ************ >Pdu_Egb_A1a MNGITVFLILAMASASLADDCTQLDMIKVKHQWAEVYGVESNRQEFGLAVFKRFFVIHPD RSLFVNVHGDNVYSPEFQAHVARVLAGVDILISSMDQEAIFKAAQKHYADFHKSKFGEVPLVEFGTAMRDVLP KYVGLRNYDNDSWSRCYAYITSKVE >Pdu_Egb_A1b MKGLLVFLVLASVSASLASECSSLDKIKVKNQWA RIHGSPSNRKAFGTAVFKRFFEDHPDRSLFANVNGNDIYSADFQAHVQRVFGGLDILIVSLDQDDLFTAAKSH YSEFHKKLGDVPFAEFGVAFLDTLSDFLPLRDYNQDPWSRCYNYIIS >Pdu_Egb_A1c MNTVTVVLVLLG CIASAMTGDCNTLQRTKVKYQWSIVYGATDNRQAFGTLVWRDFFGLYPDRSLFSGVRGENIYSPEFRAHVVRV FAGFDILISLLDQEDILNSALAHYAAFHKQFPSIPFKEFGVVLLEALAKTIPEQFDQDAWSQCYAVIVAGVTA >Pdu_Egb_A1d_alpha MYQILSVAVLVLSCLALGTLGEEVCGPLERIKVQHQWVSVYGADHDRLKVSTL VWKDFFEHHPEERARFERVNSDNIFSGDFRAHMVRVFAGFDLLIGVLNEEEIFKSAMIHYTKMHNDLGVTTEI IKEFGKSIARVLPEFMDGKPDITAWRPCFNLIAAGVSE >Pdu_Egb_A1d_beta MYFSYFTAAASYLSVAVLVLSCLVQGILGEEVCGPLEKIKVQHQWASAYRGDHD RLKMSTLVWKDFFAHNPEERARFERVHSDDIYSGDFRAHMVRVFAGFDLLIGALNQEDIFRSAMIHYTKMHKK LGVTYEIGIEFGKSIGRVLPEFIDGKLDITAWRPCYKLIATGVDE >Pdu_Egb_A1d_gamma MYLSVAVLVLSCLALGTQGEEVCGPLEKIKVQHQWASAYRGDHDRLKMSTLVW KDFFAHHPEERARFERVHSDDIYSGDFRAHMVRVFAGFDLLIGVLNQDEIFKSAMIHYTKMHNDLGVKTEIVL EFGKSIARVLPDFIDGKPDITAWRPCFKLIAAGVSE >Pdu_Egb_A2 MNNLVILVGLLCLGLTSATKCGPL QRLKVKQQWAKAYGVGHERLELGIALWKSIFAQDPESRSIFTRVHGDDVRHPAFEAHIARVFNGFDRIISSLT DEDVLQAQLAHLKAQHIKLGISAHHFKLMRTGLSYVLPAQLGRCFDKEAWGSCWDEVIYPGIKSL >Pdu_Egb_B1 MLVLAVFVAALGLAAADQCCSIEDRNEVQALWQSIWSAENTGKRTIIGHQIFEELFDINP GTKDLFKRVNVEDTSSPEFEAHVLRVMNGLDTLIGVLDDPATGYSLITHLAEQHKAREGFKPSYFKDIGVALK RVLPQVASCFNPEAWDHCFNGFVEAITNKMNAL >Pdu_Egb_B2 MLVLVLSLAFLGSALAEDCCSAADRKTVLRDWQSVWSAEFTGRRVAIGTAIFEELFAIDA GAKDVFKNVAVDKPESAEWAAHVIRVINGLDLAINLLEDPRALKEELLHLAKQHRERDGVKAVYFDEIGRALL
    [Show full text]
  • (HLXB9) in Infant Acute Myeloid Leukemia
    EDITORIALS Novel insights into the role of aberrantly expressed MNX1 (HLXB9) in infant acute myeloid leukemia Juerg Schwaller University Children’s Hospital beider Basel (UKBB), Department of Biomedicine, University of Basel Childhood Leukemia Group ZLF, Switzerland. E-mail: [email protected] doi:10.3324/haematol.2018.205971 lmost two decades ago, the molecular characteriza- TP53 and its target the cyclin-dependent kinase inhibitor 1A tion of a t(7;12)(q36;p13) chromosomal translocation (CDKN1A, aka p21WAF1/CIP1). As oncogene-induced senescence Ain very young children with acute myeloid leukemia is a hallmark of early malignant transformation of solid (AML) and poor outcome identified a fusion mRNA poten- tumors, this finding suggests that MNX1 overexpression may tially encoding for a chimeric protein that contains the point- result in a pre-cancerous state.16 However, one has to keep in ed (PNT) and ETS domains of the ETS variant 6 (ETV6) gene, mind that both of the models used are immortalized solid also known as TEL1 (Translocating E26 transforming-specific cancer cell lines that may carry potent oncogenes such as leukemia 1) on 12p13, joined to the regulatory sequences and mutated NRASQ61K present in HT-1080 (https://portals.broadinsti- first exons of the HLXB9 homeobox gene.1 Previous work tute.org/ccle/page?cell_line= HT1080_SOFT_TISSUE). reported a series of infant AML patients with t(7;12)(q36;p13) Nevertheless, previous work has shown that overexpression with blasts carrying a potential ETV6 translocation (revealed of well-characterized AML-associated fusion oncogenes (e.g. by a split FISH signal).2,3 In fact, the entire HLBX9 gene seems PML-RARA, RUNX1-ETO, CBFB-MYH11) induces DNA to be transferred onto the der(12) without disruption of the damage, and activates a CDKN1A-dependent cell cycle arrest gene itself.
    [Show full text]
  • The Genome of Mekong Tiger Perch (Datnioides Undecimradiatus) Provides 3 Insights Into the Phylogenic Position of Lobotiformes and Biological Conservation
    bioRxiv preprint doi: https://doi.org/10.1101/787077; this version posted September 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 The genome of Mekong tiger perch (Datnioides undecimradiatus) provides 3 insights into the phylogenic position of Lobotiformes and biological conservation 4 5 Shuai Sun1,2,3†, Yue Wang1,2,3,†, Xiao Du1,2,3,†, Lei Li1,2,3,4,†, Xiaoning Hong1,2,3,4, Xiaoyun Huang1,2,3, He Zhang1,2,3, 6 Mengqi Zhang1,2,3, Guangyi Fan1,2,3, Xin Liu1,2,3,*, Shanshan Liu1,2,3* 7 8 1 BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China 9 2 BGI-Shenzhen, Shenzhen, 518083, China 10 3 China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China 11 4 School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China 12 13 14 † These authors contributed equally to this work. 15 * Correspondence authors: [email protected] (S. L.), [email protected] (X. L.) 16 17 Abstract 18 Mekong tiger perch (Datnioides undecimradiatus) is one ornamental fish and a 19 vulnerable species, which belongs to order Lobotiformes. Here, we report a ~595 Mb 20 D. undecimradiatus genome, which is the first whole genome sequence in the order 21 Lobotiformes. Based on this genome, the phylogenetic tree analysis suggested that 22 Lobotiformes and Sciaenidae are closer than Tetraodontiformes, resolving a long-time 23 dispute.
    [Show full text]
  • Natural Autoantibodies in Healthy Neonatals Recognizing a Peptide
    Strana 352 VOJNOSANITETSKI PREGLED Vojnosanit Pregl 2014; 71(4): 352–361. UDC: 616.017 ORIGINAL ARTICLE DOI: 10.2298/VSP1404352D Natural autoantibodies in healthy neonatals recognizing a peptide derived from the second conserved region of HIV-1 gp120 Prirodna antitela prisutna kod zdrave novoroÿenþadi koja prepoznaju peptid poreklom iz drugog konzerviranog regiona HIV-1 gp120 Ana Djordjeviü Vujiþiü*, Branislava Gemoviü†, Veljko Veljkoviü†, Sanja Glišiü†, Nevena Veljkoviü† *Institute of Neonatology, University of Belgrade, Belgrade, Serbia; †Centre for Multidisciplinary Research and Engineering, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia Abstract tibodies in sera of HIV negative newborn babies. Further, in order to identify which of already known innate antigens are Background/Aim. High sera reactivity with a peptide derived the most similar to NTM1 peptide we screened innate immune from human immunodeficiency virus HIV-1 envelope protein antigen sequence database collected from the literature. This gp120, NTM1, correlate with non-progressive HIV-1 infection screening revealed that the most similar sequence are ribonu- and also may have protective role in breast and prostate cancer. cleoproteins RO60, in addition to previously identified N- We also detected a low NTM1 reactive antibodies titer in terminus of vasoactive intestinal peptide. Conclusion. The re- healthy HIV negative sera and showed that antibody levels can sults of this study confirm the hypothesis that NTM1 recog- be significantly increased with vigorous physical activity. How- nizing antibodies are a part of humoral innate immune re- ever, the immune system seems to be unresponsive or tolerant sponse. Further, computational similarity screening revealed a to this peptide, implicating that the NTM1 sequence encom- vasoactive intestinal peptide and RO60 as the most similar se- passes or overlaps a certain innate immune epitope.
    [Show full text]
  • The Amniotic Fluid Proteome Differs Significantly Between Donor And
    J Korean Med Sci. 2020 Mar 16;35(10):e73 https://doi.org/10.3346/jkms.2020.35.e73 eISSN 1598-6357·pISSN 1011-8934 Original Article The Amniotic Fluid Proteome Differs Obstetrics & Gynecology Significantly between Donor and Recipient Fetuses in Pregnancies Complicated by Twin-to-Twin Transfusion Syndrome Sun Min Kim ,1,2* Byoung-Kyu Cho ,3* Byoung Jae Kim ,1,2 Ha Yun Lee ,3 Errol R. Norwitz ,4 Min Jueng Kang ,3 Seung Mi Lee ,1 Chan-Wook Park ,1 Jong Kwan Jun ,1 Eugene C. Yi ,3 and Joong Shin Park 1 Received: Apr 7, 2019 1Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University Accepted: Jan 20, 2020 College of Medicine, Seoul, Korea 2Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Address for Correspondence: Boramae Medical Center, Seoul, Korea Joong Shin Park, MD, PhD 3Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Department of Obstetrics & Gynecology, Seoul Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, National University Hospital, Seoul National Korea University College of Medicine, 101 Daehak-ro, 4Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA Jongno-gu, Seoul 03080, Korea. E-mail: [email protected] Eugene C. Yi, PhD ABSTRACT Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School Background: Twin-to-twin transfusion syndrome (TTTS) is a serious complication of of Convergence Science and Technology and monochorionic twin pregnancies. It results from disproportionate blood supply to each College of Medicine or College of Pharmacy, fetus caused by abnormal vascular anastomosis within the placenta.
    [Show full text]
  • Quantitative Plasma Proteomics of Survivor and Non-Survivor COVID-19 Patients Admitted to Hospital Unravels Potential Prognostic
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.26.20248855; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Quantitative plasma proteomics of survivor and non-survivor COVID- 19 patients admitted to hospital unravels potential prognostic biomarkers and therapeutic targets Daniele C. Flora &1,4, Aline D. Valle &1, Heloisa A. B. S. Pereira &1, Thais F. Garbieri 1, Nathalia R. Buzalaf 1, Fernanda N. Reis1, Larissa T. Grizzo 1, Thiago J. Dionisio 1, Aline L. Leite 2, Virginia B. R. Pereira 3, Deborah M. C. Rosa 4, Carlos F. Santos 1, Marília A. Rabelo Buzalaf *1 1 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil. 2 Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, USA. 3 Adolfo Lutz Institute, Center of Regional Laboratories II - Bauru, SP, Brazil 4 Bauru State Hospital, Bauru, SP, Brazil * Corresponding author: [email protected]. Tel: +55 14 32358346 & Joint first authors Abstract The development of new approaches that allow early assessment of which cases of COVID-19 will likely become critical and the discovery of new therapeutic targets are urgent demands. In this cohort study, we performed proteomic and laboratorial profiling of plasma from 163 patients admitted to Bauru State Hospital (Bauru, SP, Brazil) between May 4th and July 4th, 2020, who were diagnosed with COVID-19 by RT-PCR nasopharyngeal swab samples.
    [Show full text]
  • 1 Title Perivascular Adipose Tissue Controls Insulin-Stimulated
    Page 1 of 41 Diabetes Title Perivascular adipose tissue controls insulin-stimulated perfusion, mitochondrial protein expression and glucose uptake in muscle through adipomuscular arterioles Surname first author Turaihi Authors & Affiliations Alexander H Turaihi, MD1; Erik H Serné, MD PhD2; Carla FM Molthoff, PhD3; Jasper J Koning, PhD4; Jaco Knol, PhD6; Hans W Niessen, MD PhD5; Marie Jose TH Goumans, PhD7; Erik M van Poelgeest, MD1; John S Yudkin, MD FCRP8; Yvo M Smulders, MD PhD2; Connie R Jimenez, PhD6; Victor WM van Hinsbergh, PhD1; Etto C Eringa, PhD1 Departments of 1Physiology, 2Internal Medicine, 3Radiology & Nuclear Medicine, 4Molecular Cell Biology and Immunology and 5Pathology, Amsterdam Cardiovascular Sciences (ACS), 6Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands. 7Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands. 8University College London, London, UK. Corresponding author Etto C Eringa, PhD Laboratory for Physiology, VU University Medical Center. Address: O/2 building, 11 W 53, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands [email protected] 1 Diabetes Publish Ahead of Print, published online January 31, 2020 Diabetes Page 2 of 41 Manuscript information Word count abstract: 189 Word count text: 3,996 Reference count: 46 Figure count: 7 Supplemental tables: 3 Supplemental Figures: 5 2 Page 3 of 41 Diabetes Abstract (189 words) Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or “vasocrine” signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking.
    [Show full text]
  • Flipping the Hemoglobin Switch and Discovering Regulators Involved in Fetal Hemoglobin Reactivation
    Flipping the Hemoglobin Switch and Discovering Regulators Involved in Fetal Hemoglobin Reactivation By Mandy Y Boontanrart A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jacob Corn, Chair Professor Ellen Robey Professor Nicholas Ingolia Professor John Dueber Summer 2020 Abstract Flipping the Hemoglobin Switch and Discovering Regulators Involved in Fetal Hemoglobin Reactivation By Mandy Y Boontanrart Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Jacob Corn, Chair The fetal to adult hemoglobin switch is a developmental process by which fetal hemoglobin becomes silenced after birth and replaced by adult hemoglobin. Diseases caused by defective or missing adult hemoglobin, such as Sickle Cell Disease or β- Thalassemia, can be ameliorated by reactivating fetal hemoglobin. We discovered that knockdown or knockout of β-globin, a subunit of adult hemoglobin, led to robust upregulation of γ-globin, a subunit of fetal hemoglobin. This phenomenon suggested that red blood cells have an inherent ability to upregulate fetal hemoglobin in the event that adult hemoglobin is lacking. We developed multiple gene-editing tools in an immortalized erythroid cell model to investigate the molecular mechanisms behind the increase in fetal hemoglobin. Time- course transcriptomics identified ATF4, a transcription factor, as a causal regulator of this response. Further analysis also converged upon downregulation of MYB and BCL11A, known repressors of γ-globin, described in detail in chapter 2. Further work in chapter 3 explores other possible fetal hemoglobin regulators as discovered by CRISPRi arrayed mediated knockdown experiments.
    [Show full text]
  • Portrait of Blood-Derived Extracellular Vesicles in Patients with Parkinson's
    Portrait of blood-derived extracellular vesicles in patients with Parkinson’s disease Jérôme Lamontagne-Proulx, MSc1, Isabelle St-Amour, PhD1, Richard Labib, PhD2, Jérémie Pilon, BSc2, Hélèna L. Denis, MSc1, Nathalie Cloutier, PhD1, Florence Roux-Dalvai, MSc1, Antony T. Vincent, MSc3, Sarah L. Mason, PhD4, Anne-Claire Duchez, PhD1, Arnaud Droit, PhD1,5, Steve Lacroix, PhD1,5, Nicolas Dupré, MD1,6, Mélanie Langlois, MD1,6, Sylvain Chouinard, MD7, Michel Panisset, MD7, Roger A. Barker, MBBS, PhD4, Eric Boilard, PhD1,8*, Francesca Cicchetti, PhD1,9* 1Centre de recherche du CHU de Québec, Québec, QC, Canada; 2Département de mathématiques et génie industriel, École Polytechnique de Montréal, Montréal, QC, Canada; 3Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada; 4Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; 5Département de médecine moléculaire, Université Laval, Québec, QC, Canada; 6Département de médecine, Université Laval, Québec, QC, Canada; Département de neurosciences, Hôpital de l'Enfant-Jésus, Québec, QC, Canada; 7Centre Hospitalier de l'Université de Montréal and Centre de recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Département de médicine, Université de Montréal, Montréal, QC, Canada; 8Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada; 9Département de psychiatrie & neurosciences, Université Laval, Québec, QC, Canada Correspondence to either: Francesca Cicchetti, Ph.D. Eric Boilard, Ph.D. Centre de Recherche du CHU de Québec Centre de Recherche du CHU de Québec Axe Neurosciences, T2-07 Infectious and immune diseases, T1-49 2705, Boulevard Laurier 2705, Boulevard Laurier Québec, QC, G1V 4G2, Canada Québec, QC, G1V 4G2, Canada Tel #: (418) 656-4141 ext.
    [Show full text]