Download The

Total Page:16

File Type:pdf, Size:1020Kb

Download The THE RELATIONSHIP OF GRAZING TO ORTHOPTERAN DIVERSITY IN THE INTERMONTANE GRASSLANDS OF THE SOUTH OKANAGAN, BRITISH COLUMBIA by PEGGY LIU GRIESDALE B. Sc., The University of British Columbia, 1998 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (ZOOLOGY) THE UNIVERSITY OF BRITISH COLUMBIA September 2005 © Peggy Liu Griesdale, 2005 ABSTRACT The antelope-brush shrub-steppe of the South Okanagan is small in size yet home to many of the unique and endangered flora and fauna of British Columbia and Canada. More insect species are found in this ecosystem than other grassland ecosystems. Antelope-brush ecosystems are dominated by bunchgrasses, antelope-brush, and a well-developed cryptogam crust, owing to the hot and dry summers of the South Okanagan. Urban and vineyard development are the most immediate threat to this fragile ecosystem, followed by unmanaged livestock grazing. Livestock grazing exposes soil, stunts plant growth, and fragments the cryptogam crust. Less than 9% of the antelope-brush ecosystem is relatively undisturbed and only two small ecological reserves exist. Orthopterans are the most important invertebrate herbivore in North American grasslands and are one of the main biotic influences on grasslands. While Orthopterans assist with biomass turnover and nutrient cycling processes of ecosystem functioning, they may add to the effects of livestock overgrazing. Numerous studies have shown contradictory results of the relationship between grasshopper abundances and grazing pressures. As part of a larger study of the biodiversity and impact of grazing on this threatened ecosystem, this study was conducted to determine how livestock grazing in the intermontane grasslands of the South Okanagan of British Columbia influenced the abundance and species assemblage of Orthopterans. Orthopterans were collected with pitfall traps in ten locations in the antelope-brush ecosystem of the South Okanagan over two years. The study sites were of three different grazing levels: 1) non-grazed; 2) moderately grazed; and 3) heavily grazed. Vegetation data were collected with Daubenmire plots at each site. Twenty-four orthopteran species were captured (seventeen grasshopper species and seven cricket species). All seventeen grasshopper species were previously known to occur in British Columbia, but the taxonomies of four of the cricket species are currently being revised. Grazing did not affect orthopteran species abundance or diversity. Regression analyses showed that the number of orthopteran species and Shannon-Wiener Index values increased with increasing bare soil. The effects of grazing on the vegetation community and structure, and its corresponding effects on the orthopteran species assemblage, are discussed. iii TABLE OF CONTENTS ABSTRACT ii TABLE OF CONTENTS iv LIST OF TABLES ." vi LIST OF FIGURES vii ACKNOWLEDGEMENTS ix 1 INTRODUCTION 1 1.1 The South Okanagan Grassland Conservation Research Project 1 1.2 Grasslands 1 1.2.1 North American Grasslands 1 1.2.2 British Columbian Grasslands 2 1.2.3 Grassland Characteristics 3 1.2.4 Climate 3 1.2.5 Bunchgrass Subzones 4 1.3 Antelope-brush Ecosystem 4 1.3.1 Characteristics and Ecological Significance 4 1.4 Grazing and Grasslands 6 1.4.1 History of Grassland Disturbances in British Columbia 6 1.4.2 Cryptogam Crust 7 1.4.3 Overgrazed Sites 7 1.5 Grasshoppers and Grazing 9 1.6 Objectives 11 2 MATERIALS AND METHODS 12 2.1 Study Location 12 2.2 Overall Study Structure 14 2.3 Grazing Categorization and History 15 2.4 Grazing History by Site 16 2.5 Arthropod Collection 18 2.5.1 Sampling Method 18 2.5.2 Pitfall Trap Design 20 2.5.3 Emptying Trap Contents 21 2.6 Data Processing 21 2.7 Statistical Analysis 23 2.7.1 Data Grouping 23 2.7.2 Data Analysis 24 2.7.3 Biodiversity Measures 24 2.7.3.1 Species Diversity and Heterogeneity Measures 24 2.7.3.2 Analysis of Variance 26 2.7.3.3 Taxonomic Diversity Measures 26 2.7.4 Cluster Analysis and non-metric Multidimensional Scaling 29 2.7.5 Vegetation Data 31 2.7.6 Correlation and Regression Analysis 32 3 RESULTS 33 3.1 Descriptive Statistics and General Observations 33 3.2 Orthopteran Abundance 41 iv 3.3 Site Groupings 44 3.4 Trap Disturbance 46 3.5 Biodiversity Measures 47 3.5.1 Taxonomic Distinctness Measures 48 3.6 Cluster Analysis and non-metric Multidimensional Scaling 51 3.6.1 Vegetation Overlays 56 3.7 Correlation Analysis 63 3.8 Regression Analysis 64 4 DISCUSSION 67 4.1 Trapping Method 67 4.1.1 Sweep Netting 67 4.1.2 Pitfall Trapping 69 4.2 Orthopteran Study in the South Okanagan 71 4.2.1 Orthopteran Species Descriptions 71 4.3 Descriptive Statistics 72 4.4 Biodiversity Measures 74 4.5 Cluster Analysis and non-metric Multidimensional Scaling 75 4.6 Vegetation Overlays, Correlation Analyses and Regression Analyses 75 4.7 Effects of Grazing on Grasshoppers in Different Grassland Types 77 5 CONCLUSION.. 83 LITERATURE CITED 84 v LIST OF TABLES Table 1. The location, latitude, longitude, unofficial name, site label, site label used for vegetation survey, and the grazing category of the ten grassland study sites in the South Okanagan, BC 14 Table 2. The grazing history, definition of grazing history, and grazing history category of the ten grassland study sites in the South Okanagan, BC 16 Table 3. Dates of pitfall trap collections from ten grassland study sites in the South Okanagan, BC 20 Table 4. List of orthopteran species found at ten study sites in the South Okanagan, BC 35 Table 5. Species occurrence at ten grassland study sites in the South Okanagan, BC 37 Table 6. Total catch over the entire collection period from ten grassland study sites in the South Okanagan, BC (missing traps are not accounted for) 39 Table 7. List of orthopteran species captured at all three grazing categories from the ten grassland study sites in the South Okanagan, BC 45 Table 8. The calculated biodiversity indices for each of the ten grassland study sites and the biodiversity indices averaged for each grazing regime from the South Okanagan, BC 48 fable 9. List of percent bare ground, percent plant cover, and plant species richness for the ten grassland study sites in the South Okanagan, BC (raw data provided by Dr. P. Krannitz) 57 Table 10. Correlations between vegetation data and orthopteran data from the ten grassland study sites in the South Okanagan, BC 64 vi LIST OF FIGURES Fig. 1. Map of the ten grassland study sites in the South Okanagan, BC and neighbouring Washington State 13 Fig. 2. Diagram of the layout of pitfall traps at each of the ten grassland study sites in the South Okanagan, BC 19 Fig. 3. The total number of orthopteran species and the total number of orthopteran specimens collected per month from ten grassland study sites in the South Okanagan, BC 41 Fig. 4. The total number of Orthopterans (divided into nymphs and adults, grasshoppers and crickets) summed across all ten grassland study sites per month, captured in the South Okanagan, BC 42 Fig. 5. Average number of Orthoptera per pitfall trap per site (with standard error bars) captured from ten grassland study sites in the South Okanagan, BC, for all collection periods. The number of orthopteran species per site is listed above the standard error bars 43 Fig. 6. Mean number of Orthoptera per grazing category, captured from ten grassland study sites in the South Okanagan, BC (with 95% confidence intervals). Non-grazed (O, V, Z); moderately grazed (S, T, X, Y); and heavily grazed (P, U, W). The number of orthopteran species per grazing category is listed above the confidence intervals 44 Fig. 7. Venn diagram representing grasshopper species presence and absence according to grazing category and the overlap between grazing categories from ten grassland study sites in the South Okanagan, BC 46 Fig. 8. Simulated means (dashed line), 95% probability funnels (continuous line), and measured average taxonomic distinctness (A+) values for each of the ten grassland study sites in the South Okanagan, BC, plotted against the number of species for 1000 random simulations 49 Fig. 9. Simulated means (dashed line), 95% probability funnels (continuous line), and measured variation in taxonomic distinctness (A+) values for each of the ten grassland study sites in the South Okanagan, BC, plotted against the number of species for 1000 random simulations 50 Fig. 10. Fitted 95% probability contours of the joint distribution of A+ and A+, from 1000 random simulations (for species sublist sizes = 5, 10, and 15), calculated for each of the ten grassland study sites in the South Okanagan, BC 51 Fig. 11. Dendrogram for hierarchical clustering of the ten grassland study sites in the South Okanagan, BC, using group-average linking of Bray-Curtis similarities calculated on square root-transformed data 52 vn Fig. 12. Dendrogram for hierarchical clustering of the ten grassland study sites in the South Okanagan, BC, using group-average linking of Bray-Curtis similarities calculated on presence/absence data : ; 53 Fig. 13. MDS of Bray-Curtis similarities from square root-transformed species abundance data from the ten grassland study sites in the South Okanagan, BC 54 Fig. 14. MDS of Bray-Curtis similarities from presence/absence data from the ten grassland study sites in the South Okanagan, BC 55 Fig. 15. MDS of Bray-Curtis similarities from square root-transformed species abundance data from the ten grassland study sites in the South Okanagan, BC, with superimposed circles of increasing size with increasing percent bare soil (arcsine transformed) 58 Fig. 16. MDS of Bray-Curtis similarities from species presence/absence data from the ten grassland study sites in the South Okanagan, BC, with superimposed circles of increasing size with increasing percent bare soil (arcsine transformed) 59 Fig.
Recommended publications
  • Insect Cold Tolerance: How Many Kinds of Frozen?
    POINT OF VIEW Eur. J. Entomol. 96:157—164, 1999 ISSN 1210-5759 Insect cold tolerance: How many kinds of frozen? B rent J. SINCLAIR Department o f Zoology, University o f Otago, PO Box 56, Dunedin, New Zealand; e-mail: [email protected] Key words. Insect, cold hardiness, strategies, Freezing tolerance, Freeze intolerance Abstract. Insect cold tolerance mechanisms are often divided into freezing tolerance and freeze intolerance. This division has been criticised in recent years; Bale (1996) established five categories of cold tolerance. In Bale’s view, freezing tolerance is at the ex­ treme end of the spectrum o f cold tolerance, and represents insects which are most able to survive low temperatures. Data in the lit­ erature from 53 species o f freezing tolerant insects suggest that the freezing tolerance strategies o f these species are divisible into four groups according to supercooling point (SCP) and lower lethal temperature (LLT): (1) Partially Freezing Tolerant-species that survive a small proportion o f their body water converted into ice, (2) Moderately Freezing Tolerant-species die less than ten degrees below their SCP, (3) Strongly Freezing Tolerant-insects with LLTs 20 degrees or more below their SCP, and (4) Freezing Tolerant Species with Low Supercooling Points which freeze at very low temperatures, and can survive a few degrees below their SCP. The last 3 groups can survive the conversion of body water into ice to an equilibrium at sub-lethal environmental temperatures. Statistical analyses o f these groups are presented in this paper. However, the data set is small and biased, and there are many other aspects o f freezing tolerance, for example proportion o f body water frozen, and site o f ice nucleation, so these categories may have to be re­ vised in the future.
    [Show full text]
  • Spatial Vision in Band-Winged Grasshoppers (Orthoptera: Acrididae: Oedipodinae)
    Spatial vision in band-winged grasshoppers (Orthoptera: Acrididae: Oedipodinae) A Senior Thesis Presented to the Faculty of the Department of Organismal Biology and Ecology, Colorado College By Alexander B. Duncan Bachelor of Arts Degree in Organismal Biology and Ecology May, 2017 Approved by: _________________________________________ Dr. Nicholas Brandley Primary Thesis Advisor ________________________________________ Dr. Emilie Gray Secondary Thesis Advisor ABSTRACT Visual acuity, the ability to resolve fine spatial details, can vary dramatically between and within insect species. Body-size, sex, behavior, and ecological niche are all factors that may influence an insect’s acuity. Band-winged grasshoppers (Oedipodinae) are a subfamily of grasshoppers characterized by their colorfully patterned hindwings. Although researchers have anecdotally suggested that this color pattern may attract mates, few studies have examined the visual acuity of these animals, and none have examined its implications on intraspecific signaling. Here, we compare the visual acuity of three bandwing species: Dissosteira carolina, Arphia pseudonietana, and Spharagemon equale. To measure acuity in these species we used a modified radius of curvature estimation (RCE) technique. Visual acuity was significantly coarser 1) in males compared to females, 2) parallel to the horizon compared to the perpendicular, and 3) in S. equale compared to other bandwings. Unlike many insect families, body size within a species did not correlate with visual acuity. To examine the functional implications of these results, we modeled the appearance of different bandwing patterns to conspecifics. These results suggest that hind- wing patterning could only be used as a signal to conspecifics at short distances (<50cm). This study furthers the exploration of behavior and the evolution of visual systems in bandwings.
    [Show full text]
  • Effects of Insolation and Body Orientation on Internal Thoracic Tem.Perature of Nym.Phal Melanoplus Packardii (Orthoptera: Acrididae)
    PHYSIOLOGICALANDCHEMICALECOLOGY Effects of Insolation and Body Orientation on Internal Thoracic Tem.perature of Nym.phal Melanoplus packardii (Orthoptera: Acrididae) DEREK J. LACTIN ANDDAN L. JOHNSON Land Rl?sourcl? Sciences Section, Agriculture and Agri-Food Canada Research Centre, P.O. Box .3000, Lethbridge, All TlJ 4131 Canada Environ. Entomol. 25(2): 423-429 (1996) ABSTRACT The effect of insolation un body temperature of nymphal Packard grasshoppers, Melmwpills packardii Scudder, was measured in the field. Live nymphs were each restrained in a Sl?ril?Sof orientations to the sun, and insolation was adjusted using a shade cloth. Internal thoracic temperature was allowed to stabilize and was compared with that of a reference Downloaded from nymph restrained in a sunshade. Equilibrium body temperatures of insolated nymphs exceed- l'd that of the reference nymph by an amount (aT/,) which increased with energy intercepted (ENERGY) and insect size (SIZE) by a relationship of the form aTb = a . ENERGY· SIZEh. \Vhen insect size was expressed as mass (grams), the estimates of a and b were L8.76 and -0.312, respectively (r2 = 0.6198); when insect size wa~ expressed as length (millimeters), a and b were 826.66 and -1.133, respectively (r2 = 0.6463) These results allow estimation of l'quilibrium body temperature elevation of M. packardii nymphs from solar radiation, the http://ee.oxfordjournals.org/ zenith angle of the sun, insect size, and the orientation of the insect to the sun. KEY WORDS grasshopper, body temperature, thermoregulation, size effects, biophysics MANYTEHRESTHIALECTOTHEHMScan control their insect size on the relationship between energy in- body temperature (TT,) by exploiting environmental terception and equilibrium T}, elevation.
    [Show full text]
  • An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
    AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites.
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • Spur-Throated Grasshoppers of the Canadian Prairies and Northern Great Plains
    16 Spur-throated grasshoppers of the Canadian Prairies and Northern Great Plains Dan L. Johnson Research Scientist, Grassland Insect Ecology, Lethbridge Research Centre, Agriculture and Agri-Food Canada, Box 3000, Lethbridge, AB T1J 4B1, [email protected] The spur-throated grasshoppers have become the most prominent grasshoppers of North Ameri- can grasslands, not by calling attention to them- selves by singing in the vegetation (stridulating) like the slant-faced grasshoppers, or by crackling on the wing (crepitating) like the band-winged grasshoppers, but by virtue of their sheer num- bers, activities and diversity. Almost all of the spur-throated grasshoppers in North America are members of the subfamily Melanoplinae. The sta- tus of Melanoplinae is somewhat similar in South America, where the melanopline Dichroplus takes the dominant role that the genus Melanoplus pated, and hiding in the valleys?) scourge that holds in North America (Cigliano et al. 2000). wiped out so much of mid-western agriculture in The biogeographic relationships are analysed by the 1870’s. Chapco et al. (2001). The grasshoppers are charac- terized by a spiny bump on the prosternum be- Approximately 40 species of grasshoppers in tween the front legs, which would be the position the subfamily Melanoplinae (mainly Tribe of the throat if they had one. This characteristic is Melanoplini) can be found on the Canadian grass- easy to use; I know elementary school children lands, depending on weather and other factors af- who can catch a grasshopper, turn it over for a fecting movement and abundance. The following look and say “melanopline” before grabbing the notes provide a brief look at representative next.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • 2009 Pinon Canyon Invertebrate Survey Report
    "- - 70.096 60.096 50.096 40.096 30.096 20.096 10.096 0.0% Fig. 1 Most abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008. 04% 1 j 0.391> 0.2% 0.1% 0.0% Fig. 2 Least abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008.7 Fig. 3 Most abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 4 Least abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 5 Asilidae species abundance calculated as a proportion of the total abundace of Asilidae in the collection period. Pinon Canyon Maneuver Site, 2008. 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% Fig. 6 Butterfly species abundance calculated as a proportion of the total abundance of butterflies in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 7 Most abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 8 Moderately abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 9 Least abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period.
    [Show full text]
  • The Food Insects Newsletter Home
    Volume 2 No.3 Index for A Place to Browse - The Food Insects Newsletter Home THE FOOD INSECTS NEWSLETTER NOVEMBER 1989 VOLUME II, NO. 3 CHITIN: A Magic Bullet? Editor's Note: Whole dried insects are about 10 percent chitin, of chitin that are parallel to the upper surface of the cell. As more or less. Although chitin presents problems of the process continues, the newer layers are secreted in a digestibility and assimilability in monogastric animals, it and parallel fashion but the orientation of the fibrils has been its derivatives, particularly chitosan, possess properties that slightly rotated. This can be best visualized by placing one are of increasing interest in medicine, industry and agriculture. hand over the other in a parallel fashion and outstretching the If the time should come when protein concentrates from fingers. Keeping the bottom hand in the same plane, rotate it insects are acceptable and produced on a large scale, the chitin slightly so that looking from the top side the fingers form a byproduct could be of significant value. At the editor's request grid. As your hands rotate through 180°, note the spatial Dr. Walter G. Goodman. professor of developmental biology orientation between the fingers of the upper and lower hands. in the Department of Entomology, University of Wisconsin, On a smaller scale, a similar process occurs in the newly kindly agreed to prepare a short article for the Newsletter on secreted layers of fibrils. Thus, micrograph cross-section the characteristics of chitin and some of its potential through the cuticle resembles the end-view of plywood due to applications.
    [Show full text]
  • Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions Kyle G. Koch University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Koch, Kyle G., "Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions" (2017). Dissertations and Student Research in Entomology. 51. https://digitalcommons.unl.edu/entomologydiss/51 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS by Kyle Koch A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors Tiffany Heng-Moss and Jeff Bradshaw Lincoln, Nebraska August 2017 ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS Kyle Koch, Ph.D. University of Nebraska, 2017 Advisors: Tiffany Heng-Moss and Jeff Bradshaw Switchgrass, Panicum virgatum L., is a perennial warm-season grass that is a model species for the development of bioenergy crops. However, the sustainability of switchgrass as a bioenergy feedstock will require efforts directed at improved biomass yield under a variety of stress factors.
    [Show full text]
  • This Is Normal Text
    NUTRIENT RESOURCES AND STOICHIOMETRY AFFECT THE ECOLOGY OF ABOVE- AND BELOWGROUND INVERTEBRATE CONSUMERS by JAYNE LOUISE JONAS B.S., Wayne State College, 1998 M.S., Kansas State University, 2000 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Division of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2007 Abstract Aboveground and belowground food webs are linked by plants, but their reciprocal influences are seldom studied. Because phosphorus (P) is the primary nutrient associated with arbuscular mycorrhizal (AM) symbiosis, and evidence suggests it may be more limiting than nitrogen (N) for some insect herbivores, assessing carbon (C):N:P stoichiometry will enhance my ability to discern trophic interactions. The objective of this research was to investigate functional linkages between aboveground and belowground invertebrate populations and communities and to identify potential mechanisms regulating these interactions using a C:N:P stoichiometric framework. Specifically, I examine (1) long-term grasshopper community responses to three large-scale drivers of grassland ecosystem dynamics, (2) food selection by the mixed-feeding grasshopper Melanoplus bivittatus, (3) the mechanisms for nutrient regulation by M. bivittatus, (4) food selection by fungivorous Collembola, and (5) the effects of C:N:P on invertebrate community composition and aboveground-belowground food web linkages. In my analysis of grasshopper community responses to fire, bison grazing, and weather over 25 years, I found that all three drivers affected grasshopper community dynamics, most likely acting indirectly through effects on plant community structure, composition and nutritional quality. In a field study, the diet of M.
    [Show full text]