Detecting Malicious Network Activity Using Flow Data and Learning Automata

Total Page:16

File Type:pdf, Size:1020Kb

Detecting Malicious Network Activity Using Flow Data and Learning Automata Detecting malicious network activity using flow data and learning automata By Christian Auby Torbjørn Skagestad Kristian Tveiten Thesis submitted in Partial Fulfillment of the requirements for the Degree Master of Technology in Information and Communication Technology Faculty of Engineering and Science University of Agder Grimstad May 2009 Table of Contents 1 Introduction.................................................................................................................9 1.1 Background and motivation...............................................................................10 1.2 Proposed solution...............................................................................................13 1.3 Limitations .........................................................................................................14 1.4 Assumptions.......................................................................................................15 2 Related work .............................................................................................................16 2.1 DDoS detection based on traffic profiles...........................................................17 2.1.1 Goal and results...........................................................................................17 2.1.2 Relevance....................................................................................................17 2.1.3 Differences..................................................................................................17 2.2 An intelligent IDS for anomaly and misuse detection in computer networks ...19 2.2.1 Goal and results...........................................................................................19 2.2.2 Relevance....................................................................................................19 2.2.3 Differences..................................................................................................19 2.3 Visualizing netflow data ....................................................................................21 2.3.1 Goal and results...........................................................................................21 2.3.2 Relevance....................................................................................................21 2.3.3 Differences..................................................................................................21 2.4 An efficient intrusion detection model based on fast inductive learning...........22 2.4.1 Goal and results...........................................................................................22 2.4.2 Relevance....................................................................................................22 2.4.3 Differences..................................................................................................22 2.5 Argus..................................................................................................................24 2.5.1 argus............................................................................................................24 2.5.2 ra .................................................................................................................24 2.5.3 rasplit...........................................................................................................24 2.5.4 racluster.......................................................................................................24 2.6 Snort...................................................................................................................25 3 Experimental setup....................................................................................................26 3.1 Malware selection ..............................................................................................27 3.2 Malware analysis ...............................................................................................29 3.2.1 Router..........................................................................................................32 3.2.2 Firewall/ bridge...........................................................................................32 3.2.3 Client network.............................................................................................32 3.2.4 Operation.....................................................................................................33 3.3 Test sets..............................................................................................................34 3.3.1 Test set 1 - Initial research..........................................................................34 3.3.2 Test set 2 - Mass infection ..........................................................................35 3.3.3 Test set 3 - Large client network.................................................................35 3.4 Automata implementation..................................................................................36 3.5 Automata testing ................................................................................................37 3.5.1 Detection.....................................................................................................38 3.5.2 Performance ................................................................................................38 4 Malware ....................................................................................................................41 4.1 BlackEnergy.......................................................................................................42 2 of 125 4.1.1 Network behavior........................................................................................42 4.1.2 Client behavior............................................................................................43 4.1.3 Spreading ....................................................................................................43 4.1.4 Lab testing...................................................................................................43 4.2 Conficker............................................................................................................44 4.2.1 Conficker.A.................................................................................................44 4.2.2 Conficker.B.................................................................................................44 4.2.3 Conficker.C.................................................................................................45 4.2.4 Network behavior........................................................................................45 4.2.5 Client behavior............................................................................................45 4.2.6 Spreading ....................................................................................................45 4.2.7 Protection features ......................................................................................46 4.2.8 Lab testing...................................................................................................46 4.3 Danmec ..............................................................................................................47 4.3.1 Network behavior........................................................................................47 4.3.2 Client behavior............................................................................................47 4.3.3 Spreading ....................................................................................................48 4.3.4 Lab testing...................................................................................................48 4.4 Waledac..............................................................................................................50 4.4.1 Network behavior........................................................................................50 4.4.2 Client behavior............................................................................................50 4.4.3 Spreading ....................................................................................................50 4.4.4 Lab testing...................................................................................................51 5 Proposed flow based LRPI and SWE IDS................................................................52 5.1 Class structure....................................................................................................53 5.1.1 Main application .........................................................................................53 5.1.2 AutomataController ....................................................................................54 5.1.3 Automaton discarding.................................................................................56 5.1.4 Automaton...................................................................................................57 5.1.5 Implement based on rules ...........................................................................59 5.2 Specific automaton.............................................................................................62 5.2.1 BlackEnergy................................................................................................62 5.2.2 Conficker.....................................................................................................63 5.2.3 Danmec .......................................................................................................63
Recommended publications
  • A the Hacker
    A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary.
    [Show full text]
  • Miscellaneous: Malware Cont'd & Start on Bitcoin
    Miscellaneous: Malware cont’d & start on Bitcoin CS 161: Computer Security Prof. Raluca Ada Popa April 19, 2018 Credit: some slides are adapted from previous offerings of this course Viruses vs. Worms VIRUS WORM Propagates By infecting Propagates automatically other programs By copying itself to target systems Usually inserted into A standalone program host code (not a standalone program) Another type of virus: Rootkits Rootkit is a ”stealthy” program designed to give access to a machine to an attacker while actively hiding its presence Q: How can it hide itself? n Create a hidden directory w /dev/.liB, /usr/src/.poop and similar w Often use invisiBle characters in directory name n Install hacked Binaries for system programs such as netstat, ps, ls, du, login Q: Why does it Become hard to detect attacker’s process? A: Can’t detect attacker’s processes, files or network connections By running standard UNIX commands! slide 3 Sony BMG copy protection rootkit scandal (2005) • Sony BMG puBlished CDs that apparently had copy protection (for DRM). • They essentially installed a rootkit which limited user’s access to the CD. • It hid processes that started with $sys$ so a user cannot disaBle them. A software engineer discovered the rootkit, it turned into a Big scandal Because it made computers more vulneraBle to malware Q: Why? A: Malware would choose names starting with $sys$ so it is hidden from antivirus programs Sony BMG pushed a patch … But that one introduced yet another vulneraBility So they recalled the CDs in the end Detecting Rootkit’s
    [Show full text]
  • The Botnet Chronicles a Journey to Infamy
    The Botnet Chronicles A Journey to Infamy Trend Micro, Incorporated Rik Ferguson Senior Security Advisor A Trend Micro White Paper I November 2010 The Botnet Chronicles A Journey to Infamy CONTENTS A Prelude to Evolution ....................................................................................................................4 The Botnet Saga Begins .................................................................................................................5 The Birth of Organized Crime .........................................................................................................7 The Security War Rages On ........................................................................................................... 8 Lost in the White Noise................................................................................................................. 10 Where Do We Go from Here? .......................................................................................................... 11 References ...................................................................................................................................... 12 2 WHITE PAPER I THE BOTNET CHRONICLES: A JOURNEY TO INFAMY The Botnet Chronicles A Journey to Infamy The botnet time line below shows a rundown of the botnets discussed in this white paper. Clicking each botnet’s name in blue will bring you to the page where it is described in more detail. To go back to the time line below from each page, click the ~ at the end of the section. 3 WHITE
    [Show full text]
  • An Introduction to Malware
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 An Introduction to Malware Sharp, Robin Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Sharp, R. (2017). An Introduction to Malware. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. An Introduction to Malware Robin Sharp DTU Compute Spring 2017 Abstract These notes, written for use in DTU course 02233 on Network Security, give a short introduction to the topic of malware. The most important types of malware are described, together with their basic principles of operation and dissemination, and defenses against malware are discussed. Contents 1 Some Definitions............................2 2 Classification of Malware........................2 3 Vira..................................3 4 Worms................................
    [Show full text]
  • An Analysis of the Asprox Botnet
    An Analysis of the Asprox Botnet Ravishankar Borgaonkar Technical University of Berlin Email: [email protected] Abstract—The presence of large pools of compromised com- motives. Exploitable vulnerabilities may exist in the Internet puters, also known as botnets, or zombie armies, represents a infrastructure, in the clients and servers, in the people, and in very serious threat to Internet security. This paper describes the way money is controlled and transferred from the Internet the architecture of a contemporary advanced bot commonly known as Asprox. Asprox is a type of malware that combines into traditional cash. Many security firms and researchers are the two threat vectors of forming a botnet and of generating working on developing new methods to fight botnets and to SQL injection attacks. The main features of the Asprox botnet mitigate against threats from botnets [7], [8], [9]. are the use of centralized command and control structure, HTTP based communication, use of advanced double fast-flux service Unfortunately, there are still many questions that need to networks, use of SQL injection attacks for recruiting new bots be addressed to find effective ways of protecting against the and social engineering tricks to spread malware binaries. The threats from botnets. In order to fight against botnets in future, objective of this paper is to contribute to a deeper understanding of Asprox in particular and a better understanding of modern it is not enough to study the botnets of past. Botnets are botnet designs in general. This knowledge can be used to develop constantly evolving, and we need to understand the design more effective methods for detecting botnets, and stopping the and structure of the emerging advanced botnets.
    [Show full text]
  • C&C Botnet Detection Over
    C&C Botnet Detection over SSL Riccardo Bortolameotti University of Twente - EIT ICT Labs masterschool [email protected] Dedicated to my parents Remo and Chiara, and to my sister Anna 2 Abstract Nowadays botnets are playing an important role in the panorama of cyber- crime. These cyber weapons are used to perform malicious activities such fi- nancial frauds, cyber-espionage, etc... using infected computers. This threat can be mitigated by detecting C&C channels on the network. In literature many solutions have been proposed. However, botnet are becoming more and more complex, and currently they are trying to move towards encrypted solutions. In this work, we have designed, implemented and validated a method to detect botnet C&C communication channels over SSL, the se- curity protocol standard de-facto. We provide a set of SSL features that can be used to detect malicious connections. Using our features, the results indicate that we are able to detect, what we believe to be, a botnet and ma- licious connections. Our system can also be considered privacy-preserving and lightweight, because the payload is not analyzed and the portion of an- alyzed traffic is very small. Our analysis also indicates that 0.6% of the SSL connections were broken. Limitations of the system, its applications and possible future works are also discussed. 3 4 Contents 1 Introduction 7 1.1 Problem Statement . .9 1.2 Research questions . 10 1.2.1 Layout of the thesis . 11 2 State of the Art 13 2.1 Preliminary concepts . 13 2.1.1 FFSN .
    [Show full text]
  • The Trojan Wars: Building the Big Picture to Combat Efraud
    THE TROJAN WARS: BUILDING THE BIG PICTURE TO COMBAT EFRAUD MNEMONIC THREAT INTELLIGENCE UNIT White Paper TABLE OF CONTENTS INTRODUCTION ................................................................................3 THE INITIAL TORPIG CAMPAIGN ......................................................4 • Infection Cycles ..........................................................................................5 • Ice IX – Downloading Torpig and Pushdo ...................................................6 • Torpig Campaign C&C infrastructure ..........................................................9 • Ice IX Takedown Avoidance Technique .......................................................10 THE FOLLOW-ON P2P ZEUS CAMPAIGN ..........................................11 • Infection Cycles ...........................................................................................12 • Neurevt – Downloading P2P Zeus ..............................................................13 THE WAY FORWARD: CONCLUSIONS AND RECOMMENDATIONS ....14 ABOUT MNEMONIC ..........................................................................15 REFERENCES ...................................................................................16 THE TROJAN WARS - BUILDING THE BIG PICTURE TO COMBAT EFRAUD MNEMONIC AS INTRODUCTION Trojans are a very sophisticated type of malware and their use by cybercriminals to perform widespread eFraud is now well established. They are rarely operated in a standalone mode and the infrastructure used to spread and maintain Trojans is
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • Downloading and Running
    City Research Online City, University of London Institutional Repository Citation: Meng, X. (2018). An integrated networkbased mobile botnet detection system. (Unpublished Doctoral thesis, City, Universtiy of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19840/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] AN INTEGRATED NETWORK- BASED MOBILE BOTNET DETECTION SYSTEM Xin Meng Department of Computer Science City, University of London This dissertation is submitted for the degree of Doctor of Philosophy City University London June 2017 Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other University. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated in the text.
    [Show full text]
  • Dgarchive a Deep Dive Into Domain Generating Malware
    DGArchive A deep dive into domain generating malware Daniel Plohmann [email protected] 2015-12-03 | Botconf, Paris © 2015 Fraunhofer FKIE 1 About me Daniel Plohmann PhD candidate at University of Bonn, Germany Security Researcher at Fraunhofer FKIE Focus: Reverse Engineering / Malware Analysis / Automation Projects ENISA Botnet Study 2011 [1] Analysis Tools PyBox, IDAscope, DGArchive, … Botnet Analysis Gameover Zeus / P2P protocols [2] DGA-based Malware [1] http://www.enisa.europa.eu/act/res/botnets/botnets-measurement-detection-disinfection-and-defence [2] http://christian-rossow.de/publications/p2pwned-ieee2013.pdf © 2015 Fraunhofer FKIE 2 Agenda Intro: Domain Generation Algorithms / DGArchive Comparison of DGA Features Registration Status of DGA Domain Space Case Studies © 2015 Fraunhofer FKIE 3 Intro Domain Generation Algorithms © 2015 Fraunhofer FKIE 4 Domain Generation Algorithms Definitions Concept first described ~2008: Domain Flux Domain Generation Algorithm (DGA) An algorithm producing Command & Control rendezvous points dynamically Shared secret between malware running on compromised host and botmaster Seeds Collection of parameters influencing the output of the algorithm Algorithmically-Generated Domain (AGD) Domains resulting from a DGA © 2015 Fraunhofer FKIE 5 Domain Generation Algorithms Origin & History Feb 2006 Sality: dynamically generates 3rd-level domain part July 2007 Torpig: Report by Verisign includes DGA-like domains July 2007 Kraken: VirusTotal upload of binary using DDNS
    [Show full text]
  • Lessons from the Sony CD DRM Episode
    Lessons from the Sony CD DRM Episode J. Alex Halderman and Edward W. Felten Center for Information Technology Policy Department of Computer Science Princeton University Abstract system called XCP that had been installed when he in- In the fall of 2005, problems discovered in two Sony- serted a Sony-BMG music CD into his computer’s CD BMG compact disc copy protection systems, XCP and drive. MediaMax, triggered a public uproar that ultimately led News of Russinovich’s discovery circulated rapidly on to class-action litigation and the recall of millions of the Internet, and further revelations soon followed, from discs. We present an in-depth analysis of these technolo- us,1 from Russinovich, and from others. It was discov- gies, including their design, implementation, and deploy- ered that the XCP rootkit makes users’ systems more ment. The systems are surprisingly complex and suffer vulnerable to attacks, that both CD DRM schemes install from a diverse array of flaws that weaken their content risky software components without obtaining informed protection and expose users to serious security and pri- consent from users, that both systems covertly transmit vacy risks. Their complexity, and their failure, makes usage information back to the vendor or the music label, them an interesting case study of digital rights manage- and that none of the protected discs include tools for unin- ment that carries valuable lessons for content companies, stalling the software. (For these reasons, both XCP and DRM vendors, policymakers, end users, and the security MediaMax seem to meet the consensus definition of spy- community. ware.) These and other findings outraged many users.
    [Show full text]
  • City Research Online
    City Research Online City, University of London Institutional Repository Citation: Acarali, D., Rajarajan, M., Komninos, N. and Herwono, I. (2016). Survey of Approaches and Features for the Identification of HTTP-Based Botnet Traffic. Journal of Network and Computer Applications, doi: 10.1016/j.jnca.2016.10.007 This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15580/ Link to published version: http://dx.doi.org/10.1016/j.jnca.2016.10.007 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Journal Logo 00 (2016) 1{19 Survey of Approaches and Features for the Identification of HTTP-Based Botnet Traffic Dilara Acaralia, Muttukrishnan Rajarajana, Nikos Komninosa, Ian Herwonob aSchool of Engineering and Mathematical Science, City University London, London, United Kingdom. bSecurity Futures Practice, Research & Innovation, British Telecom, Ipswich IP5 3RE, United Kingdom. Abstract Botnet use is on the rise, with a growing number of botmasters now switching to the HTTP-based C&C infrastructure.
    [Show full text]