Downloading and Running

Total Page:16

File Type:pdf, Size:1020Kb

Downloading and Running City Research Online City, University of London Institutional Repository Citation: Meng, X. (2018). An integrated networkbased mobile botnet detection system. (Unpublished Doctoral thesis, City, Universtiy of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19840/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] AN INTEGRATED NETWORK- BASED MOBILE BOTNET DETECTION SYSTEM Xin Meng Department of Computer Science City, University of London This dissertation is submitted for the degree of Doctor of Philosophy City University London June 2017 Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other University. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated in the text. This dissertation contains less than 65,000 words including appendices, bibliography, footnotes, tables and equations and has less than 150 figures. Xin Meng June 2017 Acknowledgements I would like to express my greatest appreciation to my supervisor Prof. George Spanoudakis. I am always motivated by his full support and his knowledge of the field during the whole period of my doctoral studies. There were times of the research for this thesis when I wondered if I would ever finish it, but his professional support and his personality gave me the strength to keep going further with the research. He is always patient, and his encouragement and advice are valued greatly. My thesis work would not have been accomplished without his help, aspiring advice and expert guidance. I would like to acknowledge my deep appreciation to all the colleagues from School of Mathematics, Computer Science & Engineering, Department of Computer Science. Special thanks go to my parents and my wife for their endless love. Abstract The increase in the use of mobile devices has made them target for attackers, through the use of sophisticated malware. One of the most significant types of such malware is mobile botnets. Due to their continually evolving nature, botnets are difficult to tackle through signature and traditional anomaly based detection methods. Machine learning techniques have also been used for this purpose. However, the study of their effectiveness has shown methodological weaknesses that have prevented the emergence of conclusive and thorough evidence about their merit. To address this problem, in this thesis we propose a mobile botnet detection system, called MBotCS and report the outcomes of a comprehensive experimental study of mobile botnet detection using supervised machine learning techniques to analyse network traffic and system calls on Android mobile devices. The research covers a range of botnet detection scenarios that is wider from what explored so far, explores atomic and box learning algorithms, and investigates thoroughly the sensitivity of the algorithm performance on different factors (algorithms, features of network traffic, system call data aggregation periods, and botnets vs normal applications and so on). These experiments have been evaluated using real mobile device traffic, and system call captured from Android mobile devices, running normal apps and mobile botnets. The experiments study has several superiorities comparing with existing research. Firstly, experiments use not only atomic but also box ML classifiers. Secondly, a comprehensive set of Android mobile botnets, which had not been considered previously, without relying on any form of synthetic training data. Thirdly, experiments contain a wider set of detection scenarios including unknown botnets and normal applications. Finally, experiments include the statistical significance of differences in detection performance measures with respect to different factors. The study resulted in positive evidence about the effectiveness of the supervised learning approach, as a solution to the mobile botnet detection problem. Contents Contents ................................................................................................................................ ix List of Figures ................................................................................................................... xiii List of Tables ....................................................................................................................... xv List of Abbreviations ......................................................................................................... xvii List of Equations ................................................................................................................ xix Chapter 1 Introduction ...................................................................................................... 1 1.1 Research background ............................................................................................... 1 1.2 Motivation ............................................................................................................... 6 1.3 Overview of approach ............................................................................................. 7 1.4 Research hypothesis and objectives ........................................................................ 8 1.5 Contribution ............................................................................................................. 9 1.6 Thesis outline ......................................................................................................... 10 Chapter 2 Literature Review ........................................................................................... 13 2.1 Background of botnet ............................................................................................ 13 2.1.1 Definition ....................................................................................................... 13 2.1.2 Taxonomy ....................................................................................................... 15 2.1.3 Lifecycle of botnet ......................................................................................... 19 2.1.4 Comparison different type of malware ........................................................... 22 2.2 Conventional botnet detection techniques ............................................................. 23 2.2.1 Incidents ......................................................................................................... 23 2.2.2 Botnet creation techniques ............................................................................. 25 2.2.3 Taxonomy of detection techniques ................................................................ 27 2.2.4 Comparison .................................................................................................... 37 2.3 Network traffic anomaly detection technique ....................................................... 43 2.3.1 Introduction of anomaly detection and intrusion detection ............................ 43 2.3.2 Classification of anomaly-based detection technique .................................... 46 2.3.3 The future trend of anomaly detection technique ........................................... 52 2.4 Machine Learning .................................................................................................. 53 2.4.1 Introduction of machine learning algorithm ................................................... 53 2.4.2 Machine learning algorithms .......................................................................... 55 2.4.3 Evaluation criteria for machine learning ........................................................ 73 2.5 Mobile botnet ......................................................................................................... 78 2.5.1 Mobile botnet accidents ................................................................................. 79 2.5.2 Mobile botnet creation ................................................................................... 82 2.5.3 Detection techniques ...................................................................................... 85 2.5.4 ML based botnet detection techniques comparison ....................................... 88 2.5.5 Mobile botnet detection specificity ................................................................ 92 2.5.6 Open issues ..................................................................................................... 95 Chapter 3 The MBotCS Detection System ..................................................................... 97 3.1 Overall framework ................................................................................................
Recommended publications
  • Click Trajectories: End-To-End Analysis of the Spam Value Chain
    Click Trajectories: End-to-End Analysis of the Spam Value Chain ∗ ∗ ∗ ∗ z y Kirill Levchenko Andreas Pitsillidis Neha Chachra Brandon Enright Mark´ Felegyh´ azi´ Chris Grier ∗ ∗ † ∗ ∗ Tristan Halvorson Chris Kanich Christian Kreibich He Liu Damon McCoy † † ∗ ∗ Nicholas Weaver Vern Paxson Geoffrey M. Voelker Stefan Savage ∗ y Department of Computer Science and Engineering Computer Science Division University of California, San Diego University of California, Berkeley z International Computer Science Institute Laboratory of Cryptography and System Security (CrySyS) Berkeley, CA Budapest University of Technology and Economics Abstract—Spam-based advertising is a business. While it it is these very relationships that capture the structural has engendered both widespread antipathy and a multi-billion dependencies—and hence the potential weaknesses—within dollar anti-spam industry, it continues to exist because it fuels a the spam ecosystem’s business processes. Indeed, each profitable enterprise. We lack, however, a solid understanding of this enterprise’s full structure, and thus most anti-spam distinct path through this chain—registrar, name server, interventions focus on only one facet of the overall spam value hosting, affiliate program, payment processing, fulfillment— chain (e.g., spam filtering, URL blacklisting, site takedown). directly reflects an “entrepreneurial activity” by which the In this paper we present a holistic analysis that quantifies perpetrators muster capital investments and business rela- the full set of resources employed to monetize spam email— tionships to create value. Today we lack insight into even including naming, hosting, payment and fulfillment—using extensive measurements of three months of diverse spam data, the most basic characteristics of this activity. How many broad crawling of naming and hosting infrastructures, and organizations are complicit in the spam ecosystem? Which over 100 purchases from spam-advertised sites.
    [Show full text]
  • Large-Scale Malware Experiments
    LARGE-SCALE MALWARE EXPERIMENTS ... CALVET ET AL. LARGE-SCALE MALWARE • Unlike with in-the-wild experiments [1], there are fewer ethical or legal issues to deal with than when performing EXPERIMENTS: WHY, HOW, AND arbitrary attacks against infected computers. SO WHAT? • Having an in vitro environment provides us with a way to Joan Calvet, Jose M. Fernandez conduct computer security research in a scientifi c way: we École Polytechnique de Montréal, Montréal, Canada can reproduce experiments and test the effect of various independent variables. Email {joan.calvet, jose.fernandez}@polymtl.ca We decided to use the Waledac botnet as a fi rst experiment for the following reasons: Pierre-Marc Bureau ESET, Montréal, Canada • Thanks to prior reverse engineering [2], we had in-depth knowledge of this threat family. Email [email protected] • This malware does not replicate, thus limiting the risk of running an experiment that might get out of control. Jean-Yves Marion LORIA, Nancy, France • There exists a set of vulnerabilities in Waledac’s peer-to- peer protocol that were worth investigating. We wanted to Email [email protected] evaluate the impact of a mitigation scheme against the botnet. ABSTRACT 1.1 The Waledac case study One of the most popular research areas in the anti-malware The architecture of the Waledac botnet is split into four layers. industry (second only to detection) is to document malware The fi rst layer contains infected hosts with private IP addresses characteristics and understand their operations. Most initiatives that are referred to as spammers. They are essentially the are based on reverse engineering of malicious binaries so as to ‘worker’ bots and constitute approximately 80% of the botnet.
    [Show full text]
  • The Botnet Chronicles a Journey to Infamy
    The Botnet Chronicles A Journey to Infamy Trend Micro, Incorporated Rik Ferguson Senior Security Advisor A Trend Micro White Paper I November 2010 The Botnet Chronicles A Journey to Infamy CONTENTS A Prelude to Evolution ....................................................................................................................4 The Botnet Saga Begins .................................................................................................................5 The Birth of Organized Crime .........................................................................................................7 The Security War Rages On ........................................................................................................... 8 Lost in the White Noise................................................................................................................. 10 Where Do We Go from Here? .......................................................................................................... 11 References ...................................................................................................................................... 12 2 WHITE PAPER I THE BOTNET CHRONICLES: A JOURNEY TO INFAMY The Botnet Chronicles A Journey to Infamy The botnet time line below shows a rundown of the botnets discussed in this white paper. Clicking each botnet’s name in blue will bring you to the page where it is described in more detail. To go back to the time line below from each page, click the ~ at the end of the section. 3 WHITE
    [Show full text]
  • Compu Talk Vol
    Sri Sathya Sai College for Women, Bhopal 2017 A newsletter from the Dept. of Computer Sci. & Appl. Compu Talk Vol. III Cyber Security job oppurtunities Botnet Department of Computer Computer Network Science and Application Firewall Departmental News Now Trending: including smartphones, televisions and tiny devices and integration of these as part of the Job Opportunities under the Cyber Internet of Things. Boom in cyber threats has Security Umbrella been an integral part of boom in information technology . Cyber security also known in simpler terms as computer security or IT security involves the Typical cyber security job titles and protection of computer systems from theft, descriptions may include the following: damage or destruction of 1. Security Analyst their hardware, software, data and information, as well from disruption, misuse or A Security Analyst analyzes and assesses misdirection of the services provided through vulnerabilities in the infrastructure which them to cause damage to the fellow humans or includes software, hardware and the society. associated networks. He/she performs The role of cyber security involves investigation using available tools, suggests controlling or limiting physical access to the counter-measures to remedy the detected hardware, as well as protecting them against any vulnerabilities, and recommends solutions harm or attack that may come via network and best practices. He/she analyzes and access intrusion, data insertion and code assesses the damage done to the injection and remote control. IT security is data/infrastructure as a result of security susceptible to being tricked into deviating from incidents, examines available recovery tools secure procedures through various methods. and processes, and recommends solutions.
    [Show full text]
  • An Introduction to Malware
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 An Introduction to Malware Sharp, Robin Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Sharp, R. (2017). An Introduction to Malware. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. An Introduction to Malware Robin Sharp DTU Compute Spring 2017 Abstract These notes, written for use in DTU course 02233 on Network Security, give a short introduction to the topic of malware. The most important types of malware are described, together with their basic principles of operation and dissemination, and defenses against malware are discussed. Contents 1 Some Definitions............................2 2 Classification of Malware........................2 3 Vira..................................3 4 Worms................................
    [Show full text]
  • An Analysis of the Asprox Botnet
    An Analysis of the Asprox Botnet Ravishankar Borgaonkar Technical University of Berlin Email: [email protected] Abstract—The presence of large pools of compromised com- motives. Exploitable vulnerabilities may exist in the Internet puters, also known as botnets, or zombie armies, represents a infrastructure, in the clients and servers, in the people, and in very serious threat to Internet security. This paper describes the way money is controlled and transferred from the Internet the architecture of a contemporary advanced bot commonly known as Asprox. Asprox is a type of malware that combines into traditional cash. Many security firms and researchers are the two threat vectors of forming a botnet and of generating working on developing new methods to fight botnets and to SQL injection attacks. The main features of the Asprox botnet mitigate against threats from botnets [7], [8], [9]. are the use of centralized command and control structure, HTTP based communication, use of advanced double fast-flux service Unfortunately, there are still many questions that need to networks, use of SQL injection attacks for recruiting new bots be addressed to find effective ways of protecting against the and social engineering tricks to spread malware binaries. The threats from botnets. In order to fight against botnets in future, objective of this paper is to contribute to a deeper understanding of Asprox in particular and a better understanding of modern it is not enough to study the botnets of past. Botnets are botnet designs in general. This knowledge can be used to develop constantly evolving, and we need to understand the design more effective methods for detecting botnets, and stopping the and structure of the emerging advanced botnets.
    [Show full text]
  • C&C Botnet Detection Over
    C&C Botnet Detection over SSL Riccardo Bortolameotti University of Twente - EIT ICT Labs masterschool [email protected] Dedicated to my parents Remo and Chiara, and to my sister Anna 2 Abstract Nowadays botnets are playing an important role in the panorama of cyber- crime. These cyber weapons are used to perform malicious activities such fi- nancial frauds, cyber-espionage, etc... using infected computers. This threat can be mitigated by detecting C&C channels on the network. In literature many solutions have been proposed. However, botnet are becoming more and more complex, and currently they are trying to move towards encrypted solutions. In this work, we have designed, implemented and validated a method to detect botnet C&C communication channels over SSL, the se- curity protocol standard de-facto. We provide a set of SSL features that can be used to detect malicious connections. Using our features, the results indicate that we are able to detect, what we believe to be, a botnet and ma- licious connections. Our system can also be considered privacy-preserving and lightweight, because the payload is not analyzed and the portion of an- alyzed traffic is very small. Our analysis also indicates that 0.6% of the SSL connections were broken. Limitations of the system, its applications and possible future works are also discussed. 3 4 Contents 1 Introduction 7 1.1 Problem Statement . .9 1.2 Research questions . 10 1.2.1 Layout of the thesis . 11 2 State of the Art 13 2.1 Preliminary concepts . 13 2.1.1 FFSN .
    [Show full text]
  • Modeling and Evaluating the Resilience of Peer-To-Peer Botnets
    P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets Christian Rossow∗‡, Dennis Andriesse‡, Tillmann Werner¶, Brett Stone-Gross†, Daniel Plohmann§, Christian J. Dietrich∗, Herbert Bos‡ ∗ Institute for Internet Security, Gelsenkirchen, Germany {rossow,dietrich}@internet-sicherheit.de ‡ VU University Amsterdam, The Netherlands {d.a.andriesse,h.j.bos}@vu.nl § Fraunhofer FKIE, Bonn, Germany, [email protected] † Dell SecureWorks, [email protected] ¶ CrowdStrike, Inc. Abstract—Centralized botnets are easy targets for takedown disrupted using the traditional approach of attacking critical efforts by computer security researchers and law enforcement. centralized infrastructure. Thus, botnet controllers have sought new ways to harden the Even though active P2P botnets such as the Zeus P2P infrastructures of their botnets. In order to meet this objective, some botnet operators have (re)designed their botnets to use variant, Sality, ZeroAccess and Kelihos have survived in the Peer-to-Peer (P2P) infrastructures. Many P2P botnets are far wild for as long as five years, relatively little is known about more resilient to takedown attempts than centralized botnets, the sizes of these botnets. It is difficult to estimate a P2P because they have no single points of failure. However, P2P botnets are subject to unique classes of attacks, such as node botnet’s size, for a number of reasons. P2P botnets often enumeration and poisoning. In this paper, we introduce a use custom protocols, so that researchers must first reverse formal graph model to capture the intrinsic properties and engineer the protocol and encryption before they can track fundamental vulnerabilities of P2P botnets. We apply our the botnet’s population.
    [Show full text]
  • Symantec Intelligence Report: June 2011
    Symantec Intelligence Symantec Intelligence Report: June 2011 Three-quarters of spam send from botnets in June, and three months on, Rustock botnet remains dormant as Cutwail becomes most active; Pharmaceutical spam in decline as new Wiki- pharmacy brand emerges Welcome to the June edition of the Symantec Intelligence report, which for the first time combines the best research and analysis from the Symantec.cloud MessageLabs Intelligence Report and the Symantec State of Spam & Phishing Report. The new integrated report, the Symantec Intelligence Report, provides the latest analysis of cyber security threats, trends and insights from the Symantec Intelligence team concerning malware, spam, and other potentially harmful business risks. The data used to compile the analysis for this combined report includes data from May and June 2011. Report highlights Spam – 72.9% in June (a decrease of 2.9 percentage points since May 2011): page 11 Phishing – One in 330.6 emails identified as phishing (a decrease of 0.05 percentage points since May 2011): page 14 Malware – One in 300.7 emails in June contained malware (a decrease of 0.12 percentage points since May 2011): page 15 Malicious Web sites – 5,415 Web sites blocked per day (an increase of 70.8% since May 2011): page 17 35.1% of all malicious domains blocked were new in June (a decrease of 1.7 percentage points since May 2011): page 17 20.3% of all Web-based malware blocked was new in June (a decrease of 4.3 percentage points since May 2011): page 17 Review of Spam-sending botnets in June 2011: page 3 Clicking to Watch Videos Leads to Pharmacy Spam: page 6 Wiki for Everything, Even for Spam: page 7 Phishers Return for Tax Returns: page 8 Fake Donations Continue to Haunt Japan: page 9 Spam Subject Line Analysis: page 12 Best Practices for Enterprises and Users: page 19 Introduction from the editor Since the shutdown of the Rustock botnet in March1, spam volumes have never quite recovered as the volume of spam in global circulation each day continues to fluctuate, as shown in figure 1, below.
    [Show full text]
  • The Trojan Wars: Building the Big Picture to Combat Efraud
    THE TROJAN WARS: BUILDING THE BIG PICTURE TO COMBAT EFRAUD MNEMONIC THREAT INTELLIGENCE UNIT White Paper TABLE OF CONTENTS INTRODUCTION ................................................................................3 THE INITIAL TORPIG CAMPAIGN ......................................................4 • Infection Cycles ..........................................................................................5 • Ice IX – Downloading Torpig and Pushdo ...................................................6 • Torpig Campaign C&C infrastructure ..........................................................9 • Ice IX Takedown Avoidance Technique .......................................................10 THE FOLLOW-ON P2P ZEUS CAMPAIGN ..........................................11 • Infection Cycles ...........................................................................................12 • Neurevt – Downloading P2P Zeus ..............................................................13 THE WAY FORWARD: CONCLUSIONS AND RECOMMENDATIONS ....14 ABOUT MNEMONIC ..........................................................................15 REFERENCES ...................................................................................16 THE TROJAN WARS - BUILDING THE BIG PICTURE TO COMBAT EFRAUD MNEMONIC AS INTRODUCTION Trojans are a very sophisticated type of malware and their use by cybercriminals to perform widespread eFraud is now well established. They are rarely operated in a standalone mode and the infrastructure used to spread and maintain Trojans is
    [Show full text]
  • The Exceptionalist's Approach to Private Sector Cybersecurity
    The Exceptionalist’s Approach to Private Sector Cybersecurity: A Marque and Reprisal Model By Michael Todd Hopkins B.A., June 2000, University of Nevada, Reno J.D., May 2003, Southern Methodist University A Thesis submitted to The Faculty of The George Washington University Law School in partial satisfaction of the requirements for the degree of Master of Laws August 15, 2011 Thesis directed by Gregory E. Maggs Interim Dean; Professor of Law Acknowledgement I wish to thank Interim Dean Gregory E. Maggs for his feedback and comments in this endeavor. Any errors or omissions are solely that of the author. ii Disclaimer Major Michael T. Hopkins serves in the U.S. Air Force Judge Advocate General’s Corps. This paper was submitted in partial satisfaction of the requirements for the degree of Master of Laws in National Security and U.S. Foreign Relations at The George Washington University Law School. The views expressed in this paper are solely those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or United States Government. iii Abstract The Exceptionalist’s Approach to Private Sector Cybersecurity: A Marque and Reprisal Model As practitioners and academics debate our nation’s cybersecurity policy the focus remains upon our national security interests as the federal government lacks the resources and people to protect all areas of society. However, this approach largely ignores the private sector despite an estimated global loss of one trillion dollars annually to cyberattacks and exploitations. Moreover, current domestic and international law do little to provide self-defense options for the private sector.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]