Hybridizing Deep Learning and Neuroevolution: Application to the Spanish Short-Term Electric Energy Consumption Forecasting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaheuristics1
METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming. -
Volume 3 Summer 2012
Volume 3 Summer 2012 . Academic Partners . Cover image Magnetic resonance image of the human brain showing colour-coded regions activated by smell stimulus. Editors Ulisses Barres de Almeida Max-Planck-Institut fuer Physik [email protected] Juan Rojo TH Unit, PH Division, CERN [email protected] [email protected] Academic Partners Fondazione CEUR Consortium Nova Universitas Copyright ©2012 by Associazione EURESIS The user may not modify, copy, reproduce, retransmit or otherwise distribute this publication and its contents (whether text, graphics or original research content), without express permission in writing from the Editors. Where the above content is directly or indirectly reproduced in an academic context, this must be acknowledge with the appropriate bibliographical citation. The opinions stated in the papers of the Euresis Journal are those of their respective authors and do not necessarily reflect the opinions of the Editors or the members of the Euresis Association or its sponsors. Euresis Journal (ISSN 2239-2742), a publication of Associazione Euresis, an Association for the Promotion of Scientific Endevour, Via Caduti di Marcinelle 2, 20134 Milano, Italia. www.euresisjournal.org Contact information: Email. [email protected] Tel.+39-022-1085-2225 Fax. +39-022-1085-2222 Graphic design and layout Lorenzo Morabito Technical Editor Davide PJ Caironi This document was created using LATEX 2" and X LE ATEX 2 . Letter from the Editors Dear reader, with this new issue we reach the third volume of Euresis Journal, an editorial ad- venture started one year ago with the scope of opening up a novel space of debate and encounter within the scientific and academic communities. -
Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions
Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions Alan Robinson Division III Thesis Committee: Lee Spector Hampshire College Jaime Davila May 2001 Mark Feinstein Contents Part I: Background 1 INTRODUCTION................................................................................................7 1.1 BACKGROUND – AUTOMATIC PROGRAMMING...................................................7 1.2 THIS PROJECT..................................................................................................8 1.3 SUMMARY OF CHAPTERS .................................................................................8 2 GENETIC PROGRAMMING REVIEW..........................................................11 2.1 WHAT IS GENETIC PROGRAMMING: A BRIEF OVERVIEW ...................................11 2.2 CONTEMPORARY GENETIC PROGRAMMING: IN DEPTH .....................................13 2.3 PREREQUISITE: A LANGUAGE AMENABLE TO (SEMI) RANDOM MODIFICATION ..13 2.4 STEPS SPECIFIC TO EACH PROBLEM.................................................................14 2.4.1 Create fitness function ..........................................................................14 2.4.2 Choose run parameters.........................................................................16 2.4.3 Select function / terminals.....................................................................17 2.5 THE GENETIC PROGRAMMING ALGORITHM IN ACTION .....................................18 2.5.1 Generate random population ................................................................18 -
Optimization of Deep Architectures for EEG Signal Classification
sensors Article Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms Diego Aquino-Brítez 1, Andrés Ortiz 2,* , Julio Ortega 1, Javier León 1, Marco Formoso 2 , John Q. Gan 3 and Juan José Escobar 1 1 Department of Computer Architecture and Technology, University of Granada, 18014 Granada, Spain; [email protected] (D.A.-B.); [email protected] (J.O.); [email protected] (J.L.); [email protected] (J.J.E.) 2 Department of Communications Engineering, University of Málaga, 29071 Málaga, Spain; [email protected] 3 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; [email protected] * Correspondence: [email protected] Abstract: Electroencephalography (EEG) signal classification is a challenging task due to the low signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification techniques, which are usually based on a predefined set of features extracted from the EEG band power distribution profile, have been previously proposed. However, the classification of EEG still remains a challenge, depending on the experimental conditions and the responses to be captured. In this context, the use of deep neural networks offers new opportunities to improve the classification performance without the use of a predefined set of features. Nevertheless, Deep Learning architec- Citation: Aquino-Brítez, D.; Ortiz, tures include a vast number of hyperparameters on which the performance of the model relies. In this A.; Ortega, J.; León, J.; Formoso, M.; paper, we propose a method for optimizing Deep Learning models, not only the hyperparameters, Gan, J.Q.; Escobar, J.J. -
A Hybrid LSTM-Based Genetic Programming Approach for Short-Term Prediction of Global Solar Radiation Using Weather Data
processes Article A Hybrid LSTM-Based Genetic Programming Approach for Short-Term Prediction of Global Solar Radiation Using Weather Data Rami Al-Hajj 1,* , Ali Assi 2 , Mohamad Fouad 3 and Emad Mabrouk 1 1 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; [email protected] 2 Independent Researcher, Senior IEEE Member, Montreal, QC H1X1M4, Canada; [email protected] 3 Department of Computer Engineering, University of Mansoura, Mansoura 35516, Egypt; [email protected] * Correspondence: [email protected] or [email protected] Abstract: The integration of solar energy in smart grids and other utilities is continuously increasing due to its economic and environmental benefits. However, the uncertainty of available solar energy creates challenges regarding the stability of the generated power the supply-demand balance’s consistency. An accurate global solar radiation (GSR) prediction model can ensure overall system reliability and power generation scheduling. This article describes a nonlinear hybrid model based on Long Short-Term Memory (LSTM) models and the Genetic Programming technique for short-term prediction of global solar radiation. The LSTMs are Recurrent Neural Network (RNN) models that are successfully used to predict time-series data. We use these models as base predictors of GSR using weather and solar radiation (SR) data. Genetic programming (GP) is an evolutionary heuristic computing technique that enables automatic search for complex solution formulas. We use the GP Citation: Al-Hajj, R.; Assi, A.; Fouad, in a post-processing stage to combine the LSTM models’ outputs to find the best prediction of the M.; Mabrouk, E. -
Long Term Memory Assistance for Evolutionary Algorithms
mathematics Article Long Term Memory Assistance for Evolutionary Algorithms Matej Crepinšekˇ 1,* , Shih-Hsi Liu 2 , Marjan Mernik 1 and Miha Ravber 1 1 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; [email protected] (M.M.); [email protected] (M.R.) 2 Department of Computer Science, California State University Fresno, Fresno, CA 93740, USA; [email protected] * Correspondence: [email protected] Received: 7 September 2019; Accepted: 12 November 2019; Published: 18 November 2019 Abstract: Short term memory that records the current population has been an inherent component of Evolutionary Algorithms (EAs). As hardware technologies advance currently, inexpensive memory with massive capacities could become a performance boost to EAs. This paper introduces a Long Term Memory Assistance (LTMA) that records the entire search history of an evolutionary process. With LTMA, individuals already visited (i.e., duplicate solutions) do not need to be re-evaluated, and thus, resources originally designated to fitness evaluations could be reallocated to continue search space exploration or exploitation. Three sets of experiments were conducted to prove the superiority of LTMA. In the first experiment, it was shown that LTMA recorded at least 50% more duplicate individuals than a short term memory. In the second experiment, ABC and jDElscop were applied to the CEC-2015 benchmark functions. By avoiding fitness re-evaluation, LTMA improved execution time of the most time consuming problems F03 and F05 between 7% and 28% and 7% and 16%, respectively. In the third experiment, a hard real-world problem for determining soil models’ parameters, LTMA improved execution time between 26% and 69%. -
A Neuroevolution Approach to Imitating Human-Like Play in Ms
A Neuroevolution Approach to Imitating Human-Like Play in Ms. Pac-Man Video Game Maximiliano Miranda, Antonio A. S´anchez-Ruiz, and Federico Peinado Departamento de Ingenier´ıadel Software e Inteligencia Artificial Universidad Complutense de Madrid c/ Profesor Jos´eGarc´ıaSantesmases 9, 28040 Madrid (Spain) [email protected] - [email protected] - [email protected] http://www.narratech.com Abstract. Simulating human behaviour when playing computer games has been recently proposed as a challenge for researchers on Artificial Intelligence. As part of our exploration of approaches that perform well both in terms of the instrumental similarity measure and the phenomeno- logical evaluation by human spectators, we are developing virtual players using Neuroevolution. This is a form of Machine Learning that employs Evolutionary Algorithms to train Artificial Neural Networks by consider- ing the weights of these networks as chromosomes for the application of genetic algorithms. Results strongly depend on the fitness function that is used, which tries to characterise the human-likeness of a machine- controlled player. Designing this function is complex and it must be implemented for specific games. In this work we use the classic game Ms. Pac-Man as an scenario for comparing two different methodologies. The first one uses raw data extracted directly from human traces, i.e. the set of movements executed by a real player and their corresponding time stamps. The second methodology adds more elaborated game-level parameters as the final score, the average distance to the closest ghost, and the number of changes in the player's route. We assess the impor- tance of these features for imitating human-like play, aiming to obtain findings that would be useful for many other games. -
Neuro-Crítica: Un Aporte Al Estudio De La Etiología, Fenomenología Y Ética Del Uso Y Abuso Del Prefijo Neuro1
JAHR ǀ Vol. 4 ǀ No. 7 ǀ 2013 Professional article Amir Muzur, Iva Rincic Neuro-crítica: un aporte al estudio de la etiología, fenomenología y ética del uso y abuso del prefijo neuro1 ABSTRACT The last few decades, beside being proclaimed "the decades of the brain" or "the decades of the mind," have witnessed a fascinating explosion of new disciplines and pseudo-disciplines characterized by the prefix neuro-. To the "old" specializations of neurosurgery, neurophysiology, neuropharmacology, neurobiology, etc., some new ones have to be added, which might sound somehow awkward, like neurophilosophy, neuroethics, neuropolitics, neurotheology, neuroanthropology, neuroeconomy, and other. Placing that phenomenon of "neuroization" of all fields of human thought and practice into a context of mostly unjustified and certainly too high – almost millenarianistic – expectations of the science of the brain and mind at the end of the 20th century, the present paper tries to analyze when the use of the prefix neuro- is adequate and when it is dubious. Key words: brain, neuroscience, word coinage RESUMEN Las últimas décadas, además de haber sido declaradas "las décadas del cerebro" o "las décadas de la mente", han sido testigos de una fascinante explosión de nuevas disciplinas y pseudo-disciplinas caracterizadas por el prefijo neuro-. A las "antiguas" especializaciones de la neurocirugía, la neurofisiología, la neurofarmacología, la neurobiología, etc., deben agregarse otras nuevas que pueden sonar algo extrañas, como la neurofilosofía, la neuroética, la neuropolítica, la neuroteología, la neuroantropología, la neuroeconomía, entre otras. El presente trabajo coloca ese fenómeno de "neuroización" de todos los campos del pensamiento y la práctica humana en un contexto de expectativas en general injustificadas y sin duda altísimas (y casi milenarias) en la ciencia del cerebro y la mente a fines del siglo XX; e intenta analizar cuándo el uso del prefijo neuro- es adecuado y cuándo es cuestionable. -
Evolving Neural Networks Using Behavioural Genetic Principles
Evolving Neural Networks Using Behavioural Genetic Principles Maitrei Kohli A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Computer Science & Information Systems Birkbeck, University of London United Kingdom March 2017 0 Declaration This thesis is the result of my own work, except where explicitly acknowledged in the text. Maitrei Kohli …………………. 1 ABSTRACT Neuroevolution is a nature-inspired approach for creating artificial intelligence. Its main objective is to evolve artificial neural networks (ANNs) that are capable of exhibiting intelligent behaviours. It is a widely researched field with numerous successful methods and applications. However, despite its success, there are still open research questions and notable limitations. These include the challenge of scaling neuroevolution to evolve cognitive behaviours, evolving ANNs capable of adapting online and learning from previously acquired knowledge, as well as understanding and synthesising the evolutionary pressures that lead to high-level intelligence. This thesis presents a new perspective on the evolution of ANNs that exhibit intelligent behaviours. The novel neuroevolutionary approach presented in this thesis is based on the principles of behavioural genetics (BG). It evolves ANNs’ ‘general ability to learn’, combining evolution and ontogenetic adaptation within a single framework. The ‘general ability to learn’ was modelled by the interaction of artificial genes, encoding the intrinsic properties of the ANNs, and the environment, captured by a combination of filtered training datasets and stochastic initialisation weights of the ANNs. Genes shape and constrain learning whereas the environment provides the learning bias; together, they provide the ability of the ANN to acquire a particular task. -
Evolving Autonomous Agent Controllers As Analytical Mathematical Models
Evolving Autonomous Agent Controllers as Analytical Mathematical Models Paul Grouchy1 and Gabriele M.T. D’Eleuterio1 1University of Toronto Institute for Aerospace Studies, Toronto, Ontario, Canada M3H 5T6 [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/alife2014/26/681/1901537/978-0-262-32621-6-ch108.pdf by guest on 27 September 2021 Abstract a significant amount of time and computational resources. Furthermore, any such design decisions introduce additional A novel Artificial Life paradigm is proposed where experimenter bias into the simulation. Finally, complex be- autonomous agents are controlled via genetically- haviors require complex representations, adding to the al- encoded Evolvable Mathematical Models (EMMs). Agent/environment inputs are mapped to agent outputs ready high computational costs of ALife algorithms while via equation trees which are evolved using Genetic Pro- further obfuscating the inner workings of the evolved agents. gramming. Equations use only the four basic mathematical We propose Evolvable Mathematical Models (EMMs), a operators: addition, subtraction, multiplication and division. novel paradigm whereby autonomous agents are evolved via Experiments on the discrete Double-T Maze with Homing GP as analytical mathematical models of behavior. Agent problem are performed; the source code has been made available. Results demonstrate that autonomous controllers inputs are mapped to outputs via a system of genetically with learning capabilities can be evolved as analytical math- encoded equations. Only the four basic mathematical op- ematical models of behavior, and that neuroplasticity and erations (addition, subtraction, multiplication and division) neuromodulation can emerge within this paradigm without are required, as they can be used to approximate any ana- having these special functionalities specified a priori. -
A Genetic Programming-Based Low-Level Instructions Robot for Realtimebattle
entropy Article A Genetic Programming-Based Low-Level Instructions Robot for Realtimebattle Juan Romero 1,2,* , Antonino Santos 3 , Adrian Carballal 1,3 , Nereida Rodriguez-Fernandez 1,2 , Iria Santos 1,2 , Alvaro Torrente-Patiño 3 , Juan Tuñas 3 and Penousal Machado 4 1 CITIC-Research Center of Information and Communication Technologies, University of A Coruña, 15071 A Coruña, Spain; [email protected] (A.C.); [email protected] (N.R.-F.); [email protected] (I.S.) 2 Department of Computer Science and Information Technologies, Faculty of Communication Science, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain 3 Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain; [email protected] (A.S.); [email protected] (A.T.-P.); [email protected] (J.T.) 4 Centre for Informatics and Systems of the University of Coimbra (CISUC), DEI, University of Coimbra, 3030-790 Coimbra, Portugal; [email protected] * Correspondence: [email protected] Received: 26 November 2020; Accepted: 30 November 2020; Published: 30 November 2020 Abstract: RealTimeBattle is an environment in which robots controlled by programs fight each other. Programs control the simulated robots using low-level messages (e.g., turn radar, accelerate). Unlike other tools like Robocode, each of these robots can be developed using different programming languages. Our purpose is to generate, without human programming or other intervention, a robot that is highly competitive in RealTimeBattle. To that end, we implemented an Evolutionary Computation technique: Genetic Programming. -
Automatic Synthesis of Working Memory Neural Networks with Neuroevolution Methods Tony Pinville, Stéphane Doncieux
Automatic synthesis of working memory neural networks with neuroevolution methods Tony Pinville, Stéphane Doncieux To cite this version: Tony Pinville, Stéphane Doncieux. Automatic synthesis of working memory neural networks with neu- roevolution methods. Cinquième conférence plénière française de Neurosciences Computationnelles, ”Neurocomp’10”, Aug 2010, Lyon, France. hal-00553407 HAL Id: hal-00553407 https://hal.archives-ouvertes.fr/hal-00553407 Submitted on 10 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AUTOMATIC SYNTHESIS OF WORKING MEMORY NEURAL NETWORKS WITH NEUROEVOLUTION METHODS Tony Pinville Stephane´ Doncieux ISIR, CNRS UMR 7222 ISIR, CNRS UMR 7222 Universite´ Pierre et Marie Curie-Paris 6 Universite´ Pierre et Marie Curie-Paris 6 4 place Jussieu, F-75252 4 place Jussieu, F-75252 Paris Cedex 05, France Paris Cedex 05, France email: [email protected] email: [email protected] ABSTRACT used in particular in Evolutionary Robotics to make real or simulated robots exhibit a desired behavior [3]. Evolutionary Robotics is a research field focused on Most evolutionary algorithms optimize a fixed size autonomous design of robots based on evolutionary algo- genotype, whereas neuroevolution methods aim at explor- rithms.