Genetic Programming for Julia: Fast Performance and Parallel Island Model Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Programming for Julia: Fast Performance and Parallel Island Model Implementation Genetic Programming for Julia: fast performance and parallel island model implementation Morgan R. Frank November 30, 2015 Abstract I introduce a Julia implementation for genetic programming (GP), which is an evolutionary algorithm that evolves models as syntax trees. While some abstract high-level genetic algorithm packages, such as GeneticAlgorithms.jl, al- ready exist for Julia, this package is not optimized for genetic programming, and I provide a relatively fast implemen- tation here by utilizing the low-level Expr Julia type. The resulting GP implementation has a simple programmatic interface that provides ample access to the parameters controlling the evolution. Finally, I provide the option for the GP to run in parallel using the highly scalable ”island model” for genetic algorithms, which has been shown to improve search results in a variety of genetic algorithms by maintaining solution diversity and explorative dynamics across the global population of solutions. 1 Introduction be inflexible when attempting to handle diverse problems. Julia’s easy vectorization, access to low-level data types, Evolving human beings and other complex organisms and user-friendly parallel implementation make it an ideal from single-cell bacteria is indeed a daunting task, yet bi- language for developing a GP for symbolic regression. ological evolution has been able to provide a variety of Finally, I will discuss a powerful and widely used solutions to the problem. Evolutionary algorithms [1–3] method for utilizing multiple computing cores to improve refers to a field of algorithms that solve problems by mim- solution discovery using evolutionary algorithms. Since icking the structure and dynamics of genetic evolution. In many languages implement multi-processing, rather than particular, evolutionary algorithms typically model solu- multi-threading, naive methods seeking to improve the tions to a given problem using some data structure, which runtime of evolutionary algorithms (e.g. evaluate the fit- can be treated as a genotype or gene. These algorithms be- ness of population members in parallel), are often rel- gin with a collection, or “population”, of these data struc- atively fruitless due to the communication overhead re- tures and iteratively generate new populations, or “gener- quired to bring the population back to a single process for ations”, by implementing genetic mutation and crossover essential steps in the algorithm iteration, such as genetic on good solutions in the existing population. Good solu- crossover. Furthermore, evolutionary algorithms that it- tions are often referred to as being “fit” if they reproduce erate with a single population are susceptible to conver- a target signal; therefore, we typically measure fitness by gence on a “local optima” solution, rather than seeking measuring how well a solution minimizes error. The fit- a more desirable “global optima” through increased ex- ness of a given solution can be thought of as a phenotype. ploration. The island model [5,6] is a useful paradigm Here, I focus on a particular type of evolutionary al- for parallel computation in evolutionary algorithms that gorithm called “genetic programming” (GP). In general, largely overcomes both concerns by iterating an indepen- genetic programming evolves syntax trees that represent dent population of solutions on each available core. Since models, which aim to reproduce a target signal given in- each population is initialized randomly, it is possible that put signals. In theory, these syntax trees can represent individual populations will independently explore solu- any program, but we will restrict ourselves to the sym- tion space and possibly converge on different local op- bolic regression problem here. Therefore, our syntax trees tima. The last piece is to implement occasional “migra- will represent equations, which will act on numeric input tion” between the populations, where good solutions from variables and reproduce a numeric output variable. Some one population are removed and sent to a different popu- powerful third-party software packages exist, such as Eu- lation running on a different parallel process. Migration reqa [4], but these packages are not open-source and can 1 seeks to encourage the overall GP to continue exploring haps you should include trigonometric functions in your around the best solutions, rather than having populations library; otherwise, maybe you should omit trig functions converging too quickly to locally optimal solutions. Fur- if your signal is not periodic but is instead quite noisy as thermore, migration is the only step in the island model the trig functions might be used to overfit the noise in the that requires communication between processes during target signal. My implementation of GP is restricted to runtime, but migration is infrequently performed and only using only the terminals stored in the library, but future it- a few solutions are communicated at each migration step. erations of this project would instead use only parameters In summary, we see that the island model provides a and variables as terminals for the syntax trees, along with highly scalable means to improve overall performance of occasional parametric optimization for each syntax tree evolutionary algorithms, rather than simply improving al- through least-squares regression or another evolutionary gorithmic runtime. algorithm. The Population type represents an independent GP population, which iterates over time to form new gener- 2 GP implementation in Julia ations of solutions. Populations store a population as a list of Trees. The number of Trees to maintain in the Pop- I employ an object-oriented implementation of GP in Julia ulation is given as the popSize property when the Popula- by defining four key types that are essential to running the tion is initialized. The subset of these Trees representing GP. The Tree type will be used to represent the solution “good” solutions are stored in a separate list as well. We models as syntax trees. At the root of each Tree is a Julia will see that “good” Trees define a Pareto front. In this Expr, which is the literal representation of the equation context, “good” trees are trees that are young, simple, and which we hope reproduces the target variable from input reproduce the output signal. For measuring the latter, a variables. The Expr type is a powerful low-level Julia type fitness function must be provided to the Population which that is perfect for this task because of fast evaluation and defines how to measure the error between the syntax tree easy manipulation. In fact, the Julia metaprogramming and the target signal; for example, you might use abso- page highlights that Julia expressions are first parsed into lute error or root-mean-squared error as a fitness function. Expr types before being possibly compiled and then eval- The GP will attempt to find Trees that, in part, minimize uated. In addition to the Expr root, Trees have property the fitness function. fields for the age (ie. the number of generations the tree There are several ways one might define the simplicity has survived unchanged), the depth (ie. the maximum tree of a syntax tree, but for our purpose we can assume that depth of the syntax tree), the number of nodes in the syn- Trees with fewer nodes will be easier to interpret in the tax tree, and the fitness value of the syntax tree. Further- context of the problem being solved by the GP. The type more, Tree types have methods for copying themselves, of crossover typically employed in genetic programming listing their nodes in evaluation order, a toString method, (discussed below) tends to produce new syntax trees that an equals method, and a method for determining if the are deeper than their parent trees; this tendency towards tree is better than another tree (if so, then we would say larger and more complicated trees is known as “bloat”. the tree “dominates” the other tree, but more on that be- Allowing bloat to go unchecked would result in only com- low). plicated solutions and eventually even effect the runtime I define a gpLibrary type as a place to store the func- of the GP algorithm. Note that bloat is not always a bad tions and terminals with which to construct Trees. Termi- thing, as the genetic material contained therein may lead nal values are numbers, called “constants”, or variables, to useful combinations of library variables for a future and they represent entities that can be used as leaves in Tree. In any case, implementing selection pressure for the syntax trees. Functions are added to the library along simplicity should help combat bloat. Future iterations of with the number of input variables they require. These this project might allow users to assign complexity val- functions are available to be used as non-leaf nodes in the ues to each function in the gpLibrary which represents the syntax trees, and so the number of inputs for each func- cost of executing that function or interpreting that func- tion determines the number of children a node will have tion in the context of the larger problem. based on the function the node represents. Beyond stor- Finally, we want “young” Trees, or specifically Trees ing these entities, gpLibrary types also contain some nice that have not been around for many generations, to allow functionality for randomly accessing stored Terminals and new solutions a chance to develop into potentially good Functions. Deciding which functions and which constants solutions before being dominated by existing Trees. This to include in the library is problem dependent. For exam- consideration helps to maintain some exploration dynam- ple, if you know your target signal is periodic, then per- 2 A Tree using crossover. To mutate a Tree, we first randomly select a node. If that node is a leaf, then the variable stored in that node is changed to a randomly selected ter- minal from the library.
Recommended publications
  • Metaheuristics1
    METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming.
    [Show full text]
  • Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions
    Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions Alan Robinson Division III Thesis Committee: Lee Spector Hampshire College Jaime Davila May 2001 Mark Feinstein Contents Part I: Background 1 INTRODUCTION................................................................................................7 1.1 BACKGROUND – AUTOMATIC PROGRAMMING...................................................7 1.2 THIS PROJECT..................................................................................................8 1.3 SUMMARY OF CHAPTERS .................................................................................8 2 GENETIC PROGRAMMING REVIEW..........................................................11 2.1 WHAT IS GENETIC PROGRAMMING: A BRIEF OVERVIEW ...................................11 2.2 CONTEMPORARY GENETIC PROGRAMMING: IN DEPTH .....................................13 2.3 PREREQUISITE: A LANGUAGE AMENABLE TO (SEMI) RANDOM MODIFICATION ..13 2.4 STEPS SPECIFIC TO EACH PROBLEM.................................................................14 2.4.1 Create fitness function ..........................................................................14 2.4.2 Choose run parameters.........................................................................16 2.4.3 Select function / terminals.....................................................................17 2.5 THE GENETIC PROGRAMMING ALGORITHM IN ACTION .....................................18 2.5.1 Generate random population ................................................................18
    [Show full text]
  • A Hybrid LSTM-Based Genetic Programming Approach for Short-Term Prediction of Global Solar Radiation Using Weather Data
    processes Article A Hybrid LSTM-Based Genetic Programming Approach for Short-Term Prediction of Global Solar Radiation Using Weather Data Rami Al-Hajj 1,* , Ali Assi 2 , Mohamad Fouad 3 and Emad Mabrouk 1 1 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; [email protected] 2 Independent Researcher, Senior IEEE Member, Montreal, QC H1X1M4, Canada; [email protected] 3 Department of Computer Engineering, University of Mansoura, Mansoura 35516, Egypt; [email protected] * Correspondence: [email protected] or [email protected] Abstract: The integration of solar energy in smart grids and other utilities is continuously increasing due to its economic and environmental benefits. However, the uncertainty of available solar energy creates challenges regarding the stability of the generated power the supply-demand balance’s consistency. An accurate global solar radiation (GSR) prediction model can ensure overall system reliability and power generation scheduling. This article describes a nonlinear hybrid model based on Long Short-Term Memory (LSTM) models and the Genetic Programming technique for short-term prediction of global solar radiation. The LSTMs are Recurrent Neural Network (RNN) models that are successfully used to predict time-series data. We use these models as base predictors of GSR using weather and solar radiation (SR) data. Genetic programming (GP) is an evolutionary heuristic computing technique that enables automatic search for complex solution formulas. We use the GP Citation: Al-Hajj, R.; Assi, A.; Fouad, in a post-processing stage to combine the LSTM models’ outputs to find the best prediction of the M.; Mabrouk, E.
    [Show full text]
  • Long Term Memory Assistance for Evolutionary Algorithms
    mathematics Article Long Term Memory Assistance for Evolutionary Algorithms Matej Crepinšekˇ 1,* , Shih-Hsi Liu 2 , Marjan Mernik 1 and Miha Ravber 1 1 Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; [email protected] (M.M.); [email protected] (M.R.) 2 Department of Computer Science, California State University Fresno, Fresno, CA 93740, USA; [email protected] * Correspondence: [email protected] Received: 7 September 2019; Accepted: 12 November 2019; Published: 18 November 2019 Abstract: Short term memory that records the current population has been an inherent component of Evolutionary Algorithms (EAs). As hardware technologies advance currently, inexpensive memory with massive capacities could become a performance boost to EAs. This paper introduces a Long Term Memory Assistance (LTMA) that records the entire search history of an evolutionary process. With LTMA, individuals already visited (i.e., duplicate solutions) do not need to be re-evaluated, and thus, resources originally designated to fitness evaluations could be reallocated to continue search space exploration or exploitation. Three sets of experiments were conducted to prove the superiority of LTMA. In the first experiment, it was shown that LTMA recorded at least 50% more duplicate individuals than a short term memory. In the second experiment, ABC and jDElscop were applied to the CEC-2015 benchmark functions. By avoiding fitness re-evaluation, LTMA improved execution time of the most time consuming problems F03 and F05 between 7% and 28% and 7% and 16%, respectively. In the third experiment, a hard real-world problem for determining soil models’ parameters, LTMA improved execution time between 26% and 69%.
    [Show full text]
  • A Genetic Programming-Based Low-Level Instructions Robot for Realtimebattle
    entropy Article A Genetic Programming-Based Low-Level Instructions Robot for Realtimebattle Juan Romero 1,2,* , Antonino Santos 3 , Adrian Carballal 1,3 , Nereida Rodriguez-Fernandez 1,2 , Iria Santos 1,2 , Alvaro Torrente-Patiño 3 , Juan Tuñas 3 and Penousal Machado 4 1 CITIC-Research Center of Information and Communication Technologies, University of A Coruña, 15071 A Coruña, Spain; [email protected] (A.C.); [email protected] (N.R.-F.); [email protected] (I.S.) 2 Department of Computer Science and Information Technologies, Faculty of Communication Science, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain 3 Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain; [email protected] (A.S.); [email protected] (A.T.-P.); [email protected] (J.T.) 4 Centre for Informatics and Systems of the University of Coimbra (CISUC), DEI, University of Coimbra, 3030-790 Coimbra, Portugal; [email protected] * Correspondence: [email protected] Received: 26 November 2020; Accepted: 30 November 2020; Published: 30 November 2020 Abstract: RealTimeBattle is an environment in which robots controlled by programs fight each other. Programs control the simulated robots using low-level messages (e.g., turn radar, accelerate). Unlike other tools like Robocode, each of these robots can be developed using different programming languages. Our purpose is to generate, without human programming or other intervention, a robot that is highly competitive in RealTimeBattle. To that end, we implemented an Evolutionary Computation technique: Genetic Programming.
    [Show full text]
  • Computational Creativity: Three Generations of Research and Beyond
    Computational Creativity: Three Generations of Research and Beyond Debasis Mitra Department of Computer Science Florida Institute of Technology [email protected] Abstract In this article we have classified computational creativity research activities into three generations. Although the 2. Philosophical Angles respective system developers were not necessarily targeting Philosophers try to understand creativity from the their research for computational creativity, we consider their works as contribution to this emerging field. Possibly, the historical perspectives – how different acts of creativity first recognition of the implication of intelligent systems (primarily in science) might have happened. Historical toward the creativity came with an AAAI Spring investigation of the process involved in scientific discovery Symposium on AI and Creativity (Dartnall and Kim, 1993). relied heavily on philosophical viewpoints. Within We have here tried to chart the progress of the field by philosophy there is an ongoing old debate regarding describing some sample projects. Our hope is that this whether the process of scientific discovery has a normative article will provide some direction to the interested basis. Within the computing community this question researchers and help creating a vision for the community. transpires in asking if analyzing and computationally emulating creativity is feasible or not. In order to answer this question artificial intelligence (AI) researchers have 1. Introduction tried to develop computing systems to mimic scientific One of the meanings of the word “create” is “to produce by discovery processes (e.g., BACON, KEKADA, etc. that we imaginative skill” and that of the word “creativity” is “the will discuss), almost since the beginning of the inception of ability to create,’ according to the Webster Dictionary.
    [Show full text]
  • Geometric Semantic Genetic Programming Algorithm and Slump Prediction
    Geometric Semantic Genetic Programming Algorithm and Slump Prediction Juncai Xu1, Zhenzhong Shen1, Qingwen Ren1, Xin Xie2, and Zhengyu Yang2 1 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China 2 Department of Electrical and Engineering, Northeastern University, Boston, MA 02115, USA ABSTRACT Research on the performance of recycled concrete as building material in the current world is an important subject. Given the complex composition of recycled concrete, conventional methods for forecasting slump scarcely obtain satisfactory results. Based on theory of nonlinear prediction method, we propose a recycled concrete slump prediction model based on geometric semantic genetic programming (GSGP) and combined it with recycled concrete features. Tests show that the model can accurately predict the recycled concrete slump by using the established prediction model to calculate the recycled concrete slump with different mixing ratios in practical projects and by comparing the predicted values with the experimental values. By comparing the model with several other nonlinear prediction models, we can conclude that GSGP has higher accuracy and reliability than conventional methods. Keywords: recycled concrete; geometric semantics; genetic programming; slump 1. Introduction The rapid development of the construction industry has resulted in a huge demand for concrete, which, in turn, caused overexploitation of natural sand and gravel as well as serious damage to the ecological environment. Such demand produces a large amount of waste concrete in construction, entailing high costs for dealing with these wastes 1-3. In recent years, various properties of recycled concrete were validated by researchers from all over the world to protect the environment and reduce processing costs.
    [Show full text]
  • A Genetic Programming Strategy to Induce Logical Rules for Clinical Data Analysis
    processes Article A Genetic Programming Strategy to Induce Logical Rules for Clinical Data Analysis José A. Castellanos-Garzón 1,2,*, Yeray Mezquita Martín 1, José Luis Jaimes Sánchez 3, Santiago Manuel López García 3 and Ernesto Costa 2 1 Department of Computer Science and Automatic, Faculty of Sciences, BISITE Research Group, University of Salamanca, Plaza de los Caídos, s/n, 37008 Salamanca, Spain; [email protected] 2 CISUC, Department of Computer Engineering, ECOS Research Group, University of Coimbra, Pólo II - Pinhal de Marrocos, 3030-290 Coimbra, Portugal; [email protected] 3 Instituto Universitario de Estudios de la Ciencia y la Tecnología, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.J.S.); [email protected] (S.M.L.G.) * Correspondence: [email protected] Received: 31 October 2020; Accepted: 26 November 2020; Published: 27 November 2020 Abstract: This paper proposes a machine learning approach dealing with genetic programming to build classifiers through logical rule induction. In this context, we define and test a set of mutation operators across from different clinical datasets to improve the performance of the proposal for each dataset. The use of genetic programming for rule induction has generated interesting results in machine learning problems. Hence, genetic programming represents a flexible and powerful evolutionary technique for automatic generation of classifiers. Since logical rules disclose knowledge from the analyzed data, we use such knowledge to interpret the results and filter the most important features from clinical data as a process of knowledge discovery. The ultimate goal of this proposal is to provide the experts in the data domain with prior knowledge (as a guide) about the structure of the data and the rules found for each class, especially to track dichotomies and inequality.
    [Show full text]
  • Evolving Evolutionary Algorithms Using Linear Genetic Programming
    Evolving Evolutionary Algorithms Using Linear Genetic Programming Mihai Oltean [email protected] Department of Computer Science, Babes¸-Bolyai University, Kogalniceanu 1, Cluj- Napoca 3400, Romania Abstract A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chro- mosome encodes an EA which is used for solving a particular problem. Several Evolu- tionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numeri- cal experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmark- ing problems. Keywords Genetic algorithms, genetic programming, linear genetic programming, evolving evo- lutionary algorithms 1 Introduction Evolutionary Algorithms (EAs) (Goldberg, 1989; Holland, 1975) are new and powerful tools used for solving difficult real-world problems. They have been developed in or- der to solve some real-world problems that the classical (mathematical) methods failed to successfully tackle. Many of these unsolved problems are (or could be turned into) optimization problems. The solving of an optimization problem means finding solu- tions that maximize or minimize a criteria function (Goldberg, 1989; Holland, 1975; Yao et al., 1999). Many Evolutionary Algorithms have been proposed for dealing with optimization problems. Many solution representations
    [Show full text]
  • Basic Concepts of Linear Genetic Programming
    Chapter 2 BASIC CONCEPTS OF LINEAR GENETIC PROGRAMMING In this chapter linear genetic programming (LGP) will be explored in further detail. The basis of the specific linear GP variant we want to investigate in this book will be described, in particular the programming language used for evolution, the representation of individuals, and the spe- cific evolutionary algorithm employed. This will form the core of our LGP system, while fundamental concepts of linear GP will also be discussed, including various forms of program execution. Linear GP operates with imperative programs. All discussions and ex- periments in this book are conducted independently from a special type of programming language or processor architecture. Even though genetic programs are interpreted and partly noted in the high-level language C, the applied programming concepts exist principally in or may be trans- lated into most modern imperative programming languages, down to the level of machine languages. 2.1 Representation of Programs The imperative programming concept is closely related to the underlying machine language, in contrast to the functional programming paradigm. All modern CPUs are based on the principle of the von Neumann archi- tecture, a computing machine composed of a set of registers and basic instructions that operate and manipulate their content. A program of such a register machine, accordingly, denotes a sequence of instructions whose order has to be respected during execution. 14 Linear Genetic Programming void gp(r) double r[8]; { ... r[0] = r[5] + 71; // r[7] = r[0] - 59; if (r[1] > 0) if (r[5] > 2) r[4] = r[2] * r[1]; // r[2] = r[5] + r[4]; r[6] = r[4] * 13; r[1] = r[3] / 2; // if (r[0] > r[1]) // r[3] = r[5] * r[5]; r[7] = r[6] - 2; // r[5] = r[7] + 15; if (r[1] <= r[6]) r[0] = sin(r[7]); } Example 2.1.
    [Show full text]
  • Meta-Genetic Programming: Co-Evolving the Operators of Variation
    Meta-Genetic Programming: Co-evolving the Operators of Variation Bruce Edmonds, Centre for Policy Modelling, Manchester Metropolitan University, Aytoun Building, Aytoun Street, Manchester, M1 3GH, UK. Tel: +44 161 247 6479 Fax: +44 161 247 6802 E-mail: [email protected] URL: http://www.fmb.mmu.ac.uk/~bruce Abstract The standard Genetic Programming approach is augmented by co-evolving the genetic operators. To do this the operators are coded as trees of inde®nite length. In order for this technique to work, the language that the operators are de®ned in must be such that it preserves the variation in the base population. This technique can varied by adding further populations of operators and changing which populations act as operators for others, including itself, thus to provide a framework for a whole set of augmented GP techniques. The technique is tested on the parity problem. The pros and cons of the technique are discussed. Keywords genetic programming, automatic programming, genetic operators, co-evolution Meta-Genetic Programming 1. Introduction Evolutionary algorithms are relatively robust over many problem domains. It is for this reason that they are often chosen for use where there is little domain knowledge. However for particular problem domains their performance can often be improved by tuning the parameters of the algorithm. The most studied example of this is the ideal mix of crossover and mutation in genetic algorithms. One possible compromise in this regard is to let such parameters be adjusted (or even evolve) along with the population of solutions so that the general performance can be improved without losing the generality of the algorithm1.
    [Show full text]
  • Neuroevolution in Deep Learning: the Role of Neutrality 3
    Neuroevolution in Deep Learning: The Role of Neutrality Edgar Galv´an Received: date / Accepted: date Abstract A variety of methods have been applied to the architectural con- figuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimi- sation of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. However, the automatic design and/or training of these modern neural networks through evolutionary algorithms is computanalli expensive. Kimura’s neutral theory of molecular evolution states that the majority of evolutionary changes at molec- ular level are the result of random fixation of selectively neutral mutations. A mutation from one gene to another is neutral if it does not affect the pheno- type. This work discusses how neutrality, given certain conditions, can help to speed up the training/design of deep neural networks . Keywords Neutrality · Deep Neural Networks · Neurevolution · Evolutionary Algorithms 1 Introduction Deep learning algorithms, commonly referred as Deep Neural Networks [18, 19,26], are inspired by deep hierarchical structures of human perception as well as production systems [7]. These algorithms have achieved expert human- level performance in multiple areas including computer vision problems [49], games [43], to mention a few examples. The design of deep neural networks arXiv:2102.08475v1 [cs.NE] 16 Feb 2021 Edgar Galv´an Naturally Inspired Computation Research Group, Department of Computer Science, Na- tional University of Ireland Maynooth, Ireland E-mail: [email protected] 2 Edgar Galv´an (DNNs) architectures (along with the optimisation of their hyperparameters) as well as their training plays a crucial part for their success or failure [28].
    [Show full text]