Omics in Soil Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Senescence Can Explain Microbial Persistence
Senescence Can Explain Microbial Persistence I. Klappera,b, P. Gilbertc, B.P. Ayatid, J. Dockerya,b, P.S. Stewartb,e aDepartment of Mathematical Sciences, Montana State University, Bozeman, MT 59717 bCenter for Biofilm Engineering, Montana State University, Bozeman, MT 59717 cSchool of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manch- ester, UK dDepartment of Mathematics, Southern Methodist University, Dallas, TX 75205 eDepartment of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717. Corresponding author: Isaac Klapper, Department of Mathematical Sciences, Mon- tana State University, Bozeman, MT 59717. Tel. (406)-994-5231. Fax. (406)-994- 1789. email: [email protected]. Running Title: Senescence Can Explain Microbial Persistence Contents Category: Theoretical Microbiology 1 Summary. It has been known for many years that small fractions of persister cells re- sist killing in many bacterial colony-antimicrobial confrontations. These persisters are not believed to be mutants. Rather it has been hypothesized that they are phenotypic variants. Current models allow cells to switch in and out of the persister phenotype. Here a different explanation is suggested, namely senescence, for persistence. Using a mathematical model including age structure, it is shown that senescence provides a natural explanation for persistence-related phenomena including the observations that persister fraction depends on growth phase in batch culture and dilution rate in continuous culture. 1 Introduction It has been observed (Balaban et al., 2004; Bigger, 1944; Gilbert et al., 1990; Green- wood & O’Grady, 1970; Keren et al., 2004B; McDermott, 1958; Moyed & Bertrand, 1983; Sufya et al., 2003; Harrison et al., 2005; Wiuff et al., 2005), dating to Bigger (1944), that many antimicrobials while effective in reducing bacterial populations are unable to eliminate them entirely, even with prolonged exposure. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Josiana Adelaide Vaz
Josiana Adelaide Vaz STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. ESTUDO DE PROPRIEDADES ANTIOXIDANTES, ANTIPROLIFERATIVAS E INDUTORAS DE APOPTOSE DE COGUMELOS SILVESTRES DO NORDESTE DE PORTUGAL. Tese do 3º Ciclo de Estudos Conducente ao Grau de Doutoramento em Ciências Farmacêuticas–Bioquímica, apresentada à Faculdade de Farmácia da Universidade do Porto. Orientadora: Isabel Cristina Fernandes Rodrigues Ferreira (Professora Adjunta c/ Agregação do Instituto Politécnico de Bragança) Co- Orientadoras: Maria Helena Vasconcelos Meehan (Professora Auxiliar da Faculdade de Farmácia da Universidade do Porto) Anabela Rodrigues Lourenço Martins (Professora Adjunta do Instituto Politécnico de Bragança) July, 2012 ACCORDING TO CURRENT LEGISLATION, ANY COPYING, PUBLICATION, OR USE OF THIS THESIS OR PARTS THEREOF SHALL NOT BE ALLOWED WITHOUT WRITTEN PERMISSION. ii FACULDADE DE FARMÁCIA DA UNIVERSIDADE DO PORTO STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. Josiana Adelaide Vaz iii The candidate performed the experimental work with a doctoral fellowship (SFRH/BD/43653/2008) supported by the Portuguese Foundation for Science and Technology (FCT), which also participated with grants to attend international meetings and for the graphical execution of this thesis. The Faculty of Pharmacy of the University of Porto (FFUP) (Portugal), Institute of Molecular Pathology and Immunology (IPATIMUP) (Portugal), Mountain Research Center (CIMO) (Portugal) and Center of Medicinal Chemistry- University of Porto (CEQUIMED-UP) provided the facilities and/or logistical supports. This work was also supported by the research project PTDC/AGR- ALI/110062/2009, financed by FCT and COMPETE/QREN/EU. Cover – photos kindly supplied by Juan Antonio Sanchez Rodríguez. -
Boletín Micológico De FAMCAL Una Contribución De FAMCAL a La Difusión De Los Conocimientos Micológicos En Castilla Y León Una Contribución De FAMCAL
Año Año 2011 2011 Nº6 Nº 6 Boletín Micológico de FAMCAL Una contribución de FAMCAL a la difusión de los conocimientos micológicos en Castilla y León Una contribución de FAMCAL Con la colaboración de Boletín Micológico de FAMCAL. Boletín Micológico de FAMCAL. Una contribución de FAMCAL a la difusión de los conocimientos micológicos en Castilla y León PORTADA INTERIOR Boletín Micológico de FAMCAL Una contribución de FAMCAL a la difusión de los conocimientos micológicos en Castilla y León COORDINADOR DEL BOLETÍN Luis Alberto Parra Sánchez COMITÉ EDITORIAL Rafael Aramendi Sánchez Agustín Caballero Moreno Rafael López Revuelta Jesús Martínez de la Hera Luis Alberto Parra Sánchez Juan Manuel Velasco Santos COMITÉ CIENTÍFICO ASESOR Luis Alberto Parra Sánchez Juan Manuel Velasco Santos Reservados todos los derechos. No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito del titular del copyright. La Federación de Asociaciones Micológicas de Castilla y León no se responsabiliza de las opiniones expresadas en los artículos firmados. © Federación de Asociaciones Micológicas de Castilla y León (FAMCAL) Edita: Federación de Asociaciones Micológicas de Castilla y León (FAMCAL) http://www.famcal.es Colabora: Junta de Castilla y León. Consejería de Medio Ambiente Producción Editorial: NC Comunicación. Avda. Padre Isla, 70, 1ºB. 24002 León Tel. 902 910 002 E-mail: [email protected] http://www.nuevacomunicacion.com D.L.: Le-1011-06 ISSN: 1886-5984 Índice Índice Presentación ....................................................................................................................................................................................11 Favolaschia calocera, una especie de origen tropical recolectada en el País Vasco, por ARRILLAGA, P. -
Sample Thesis Title with a Concise and Accurate Description
ELUCIDATION OF NOVEL PHYSIOLOGICAL AND GENETIC ELEMENTS ASSOCIATED WITH THE COLD ADAPTABILITY AND SURVIVAL OF LISTERIA MONOCYTOGENES IN THE FOOD PROCESSING CONTINUUM by Patricia Hingston B.A.Sc., Dalhousie University, 2010 M.Sc. Dalhousie University, 2013 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Food Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2017 © Patricia Hingston, 2017 i Abstract Novel physiological and genetic factors associated with the survival of Listeria monocytogenes in the food-processing continuum were investigated, with an emphasis on its cold- growth ability. Food-related L. monocytogenes strains (n=166) were sequenced and subsequently evaluated on their ability to tolerate cold (4°C), salt (6% NaCl, 25°C), acid (pH 5, 25°C), and desiccation (33% RH, 20°C) stress. Stress tolerances were associated with serotype, clonal complex, full-length inlA profiles, and plasmid harbourage. Notably, strains possessing full length inlA (as opposed to a truncated version) exhibited significantly (p<0.001) enhanced cold tolerance and plasmid-positive strains demonstrated enhanced (p=0.013) acid tolerance. Relative gene expression indicated that several plasmid-encoded genes (e.g., NADH peroxidase, clpL, proW) are induced in L. monocytogenes during growth in 6% NaCl and at pH 5. Additionally, a whole- genome sequence phylogeny revealed closely related stress sensitive and tolerant strains, highlighting that minor genetic differences impact strain phenotypes. Strand-specific RNA sequencing showed that L. monocytogenes suppresses 1.3× more genes than it induces at 4°C relative to 20°C. The largest number (n=1,431) and greatest magnitude (>1,000-fold) of differentially expressed (e.g., >2-fold, p<0.05) genes occurred in late stationary- phase cells. -
Senescence in Bacteria and Its Underlying Mechanisms
fcell-09-668915 June 14, 2021 Time: 13:54 # 1 REVIEW published: 18 June 2021 doi: 10.3389/fcell.2021.668915 Senescence in Bacteria and Its Underlying Mechanisms Ulrich Karl Steiner* Evolutionary Demography Group, Institute of Biology, Freie Universität Berlin, Berlin, Germany Bacteria have been thought to flee senescence by dividing into two identical daughter cells, but this notion of immortality has changed over the last two decades. Asymmetry between the resulting daughter cells after binary fission is revealed in physiological function, cell growth, and survival probabilities and is expected from theoretical understanding. Since the discovery of senescence in morphologically identical but physiologically asymmetric dividing bacteria, the mechanisms of bacteria aging have been explored across levels of biological organization. Quantitative investigations are heavily biased toward Escherichia coli and on the role of inclusion bodies—clusters of misfolded proteins. Despite intensive efforts to date, it is not evident if and how Edited by: Owen Jones, inclusion bodies, a phenotype linked to the loss of proteostasis and one of the University of Southern Denmark, consequences of a chain of reactions triggered by reactive oxygen species, contribute Denmark to senescence in bacteria. Recent findings in bacteria question that inclusion bodies Reviewed by: are only deleterious, illustrated by fitness advantages of cells holding inclusion bodies Jun Zhou, German Cancer Research Center under varying environmental conditions. The contributions of other hallmarks of aging, (DKFZ), Germany identified for metazoans, remain elusive. For instance, genomic instability appears to Stefano Pagliara, University of Exeter, United Kingdom be age independent, epigenetic alterations might be little age specific, and other Urszula Lapinska, hallmarks do not play a major role in bacteria systems. -
Microbial Ageing and Longevity
REVIEWS Microbial ageing and longevity Roy Moger- Reischer and Jay T. Lennon * Abstract | Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity. Senescence Ageing is the increase in age of an individual organism individual is equal to the amount of time since it was Decreasing survival and/or during its life. Understanding ageing, and the related created by binary fission, which is about 20 min. Yet if reproductive ability of an phenomena of senescence and longevity, is central to division is symmetrical, each daughter is born possess individual during ageing. many areas of biology, and is of practical concern ing an equal portion of the mother cell’s aged macro Longevity because it influences the quality of human life. As such, molecular cargo, which was already 20 min old at fission. -
Aproximación Al Catálogo De Las Especies Del Orden Boletales (Basidiomycetes, Fungi) En Extremadura (España)
1255 Aproximación al Catálogo de las especies del orden Boletales (Basidiomycetes, Fungi) en Extremadura (España) FRANCISCO M. VÁZQUEZ P ARDO* SOLEDAD RAMOS MAQUEDA* ANA BELÉN LUCAS PIMIENTA* DIEGO PERAL PACHECO** En el presente trabajo se realiza una revisión taxonómica y nomenclatural de las especies, géneros y familias con las que cuenta el orden Boletales en Extremadura (España). En el estudio realizado se ponen de manifiesto errores nomenclaturales y taxonómicos para algunas de las especies y géneros previa- mente citados para el territorio extremeño. El catálogo que se presenta, contiene un total de 6 familias, 15 géneros, 70 especies y tres subespecies, frente a las más de 7 familias, 16 géneros y 80 especies previamente citadas. The revision about Extremadure’s Boletales (Spain) showed some nomenclatural and taxonomical mistakes in the species and genus cited before for Extremadure. The former checklist contained more than 7 families, 16 genus and 80 species, in opposite of the list reviewed by us with 6 families, 15 genus, 70 species and three subspecies. * Sección de Producción Forestal. Servicio de Investigación y Desarrollo Tecnológico. Consejería de Agricultura y Medio Ambiente. Ctra. De Portugal s/n 06800 Mérida (Badajoz). ** Historia de la Medicina. Faculta de Medicina. UEX. Avda. del Elvas s/n. 06071 Badajoz. Contacto: e-mail: [email protected] 1256 FRANCISCO M. VÁZQUEZ PARDO, SOLEDAD RAMOS MAQUEDA ANA BELÉN LUCAS PIMIENTA Y DIEGO PERAL PACHECO INTRODUCCIÓN La diversidad biológica con la que cuentan los espacios naturales de Extremadura, sólo se podrá valorar conociendo la riqueza biológica que presen- tan cada uno de sus reinos de seres vivos. -
Phenolic Profile of Seventeen Portuguese Wild Mushrooms
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital do IPB 1 Phenolic profile of seventeen Portuguese wild mushrooms 2 3 Josiana A. Vaza,b,c,d, Lillian Barrosa, Anabela Martinse, Jorge Sá Moraise, 4 M. Helena Vasconcelosb,c Isabel C.F.R. Ferreiraa,e,* 5 6 a CIMO- Montain Research Centre, Bragança, Portugal. 7 bFFUP - Faculty of Pharmacy of the University of Porto, Portugal 8 cIPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 9 Portugal. 10 dCEQUIMED-UP - Center of Medicinal Chemistry, University of Porto, Portugal. 11 eEscola Superior Agrária, Instituto Politécnico de Bragança, Portugal. 12 13 14 *Corresponding author. e-mail: [email protected], tel. +351273303219, fax 15 +351273325405. 16 17 The work described has not been published previously; it is not under consideration for 18 publication elsewhere; its publication is approved by all authors and tacitly or explicitly by 19 the responsible authorities where the work was carried out; if accepted, it will not be 20 published elsewhere including electronically in the same form, in English or in any other 21 language, without the written consent of the copyright-holder. 22 23 1 24 ABSTRACT 25 Analysis of phenolic compounds in seventeen Portuguese wild mushroom species was 26 carried out by high-performance liquid chromatography coupled to photodiode array 27 detection (HPLC-DAD). Protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acid 28 were found and quantified. Fistulina hepatica showed the highest phenolic acids 29 concentration (111.72 mg/Kg, dw) due to the significant contribution of protocatechuic 30 (67.62 mg/Kg) and p-hydroxybenzoic (41.92 mg/kg) acids. -
Phylogenetic Assessment of Global Suillus ITS Sequences Supports Morphologically Defined Species and Reveals Synonymous and Undescribed Taxa
Mycologia, 108(6), 2016, pp. 1216–1228. DOI: 10.3852/16-106 # 2016 by The Mycological Society of America, Lawrence, KS 66044-8897 Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa Nhu H. Nguyen1 Collectively, this comprehensive genus-level phyloge- Department of Tropical Plant and Soil Sciences, University netic integration of currently available Suillus ITS ‘ ‘ of Hawai iatMa¯noa, Honolulu, Hawai i 96822 molecular data and metadata will aid future taxonomic Else C. Vellinga and ecological work on an important group of ectomy- Thomas D. Bruns corrhizal fungi. Department of Plant and Microbial Biology, University of Key words: Boletales, bolete, geography, molecular California, Berkeley, California 94720 phylogenetics, Suillaceae, suilloid, systematics, taxonomy Peter G. Kennedy INTRODUCTION Departments of Plant Biology and Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, The genus Suillus Gray comprises approximately 100 Minnesota 55108 mushroom-forming species that are widely distributed throughout the Northern Hemisphere. Suillus species associate almost exclusively with members of the family Abstract: The genus Suillus represents one of the most Pinaceae and exhibit strong patterns of host specificity recognizable groups of mushrooms in conifer forests among different genera (Smith and Thiers 1964a, throughout the Northern Hemisphere. Although for Klofac 2013). They can also be found where hosts decades the genus has been relatively well defined mor- have been planted and have subsequently invaded in phologically, previous molecular phylogenetic assess- the Southern Hemisphere (Chapela et al. 2001, Dickie ments have provided important yet preliminary insights et al. 2010, Walbert et al. 2010, Hayward et al. -
Supplementary Fig
TAXONOMY phyrellus* L.D. Go´mez & Singer, Xanthoconium Singer, Xerocomus Que´l.) Taxonomical implications.—We have adopted a con- Paxillaceae Lotsy (Alpova C. W. Dodge, Austrogaster* servative approach to accommodate findings from Singer, Gyrodon Opat., Meiorganum*Heim,Melano- recent phylogenies and propose a revised classifica- gaster Corda, Paragyrodon, (Singer) Singer, Paxillus tion that reflects changes based on substantial Fr.) evidence. The following outline adds no additional Boletineae incertae sedis: Hydnomerulius Jarosch & suborders, families or genera to the Boletales, Besl however, excludes Serpulaceae and Hygrophoropsi- daceae from the otherwise polyphyletic suborder Sclerodermatineae Binder & Bresinsky Coniophorineae. Major changes on family level Sclerodermataceae E. Fisch. (Chlorogaster* Laessøe & concern the Boletineae including Paxillaceae (incl. Jalink, Horakiella* Castellano & Trappe, Scleroder- Melanogastraceae) as an additional family. The ma Pers, Veligaster Guzman) Strobilomycetaceae E.-J. Gilbert is here synonymized Boletinellaceae P. M. Kirk, P. F. Cannon & J. C. with Boletaceae in absence of characters or molecular David (Boletinellus Murill, Phlebopus (R. Heim) evidence that would suggest maintaining two separate Singer) families. Chamonixiaceae Ju¨lich, Octavianiaceae Loq. Calostomataceae E. Fisch. (Calostoma Desv.) ex Pegler & T. W. K Young, and Astraeaceae Zeller ex Diplocystaceae Kreisel (Astraeus Morgan, Diplocystis Ju¨lich are already recognized as invalid names by the Berk. & M.A. Curtis, Tremellogaster E. Fisch.) Index Fungorum (www.indexfungorum.com). In ad- Gyroporaceae (Singer) Binder & Bresinsky dition, Boletinellaceae Binder & Bresinsky is a hom- (Gyroporus Que´l.) onym of Boletinellaceae P. M. Kirk, P. F. Cannon & J. Pisolithaceae Ulbr. (Pisolithus Alb. & Schwein.) C. David. The current classification of Boletales is tentative and includes 16 families and 75 genera. For Suillineae Besl & Bresinsky 16 genera (marked with asterisks) are no sequences Suillaceae (Singer) Besl & Bresinsky (Suillus S.F.