Boesenbergia Pandurata Roxb., an Indonesian Medicinal Plant: Phytochemistry, Biological Activity, Plant Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Boesenbergia Pandurata Roxb., an Indonesian Medicinal Plant: Phytochemistry, Biological Activity, Plant Biotechnology Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 13 ( 2014 ) 13 – 37 International Seminar on Natural Product Medicines, ISNPM 2012 Boesenbergia pandurata Roxb., An Indonesian Medicinal Plant: Phytochemistry, Biological Activity, Plant Biotechnology Agus Chahyadi a,b, Rika Hartatia, Komar Ruslan Wirasutisnaa, Elfahmia* aPharmaceutical Biology Research Group, School of Pharmacy, Bandung Institute of Technology, Jl. Ganesha 10 Bandung, Indonesia, 40132 bPharmacy Department, Faculty of Pharmacy, Universitas Haluoleo, Kendari, 93231, Indonesia Abstract Boesenbergia pandurata Roxb. (Zingiberaceae), known as “temu kunci”, is one of the Indonesian medicinal plants. Its rhizome has been traditionally used in folk medicine for treatment of several diseases. Rhizome of B. pandurata contains essential oils and many flavonoid compounds that showed many interesting pharmacological activities, such as antifungal, antibacterial, antioxidant, etc. Interestingly, this plant has several prenylated flavonoid compounds, panduratins, that showed very promising of biological activities, especially as strong antifungal and antibacterial, anti-inflammatory, and anti-cancer. This paper aims to review chemical constituents of this plant and their pharmacological activities and also to give a brief view through biotechnological perspective concerning the several possibilities to produce several valuable prenylated flavonoids from this plant. ©© 2014 2014 The The Authors. Authors. Published Published by Elsevier by Elsevier B.V. ThisB.V. is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the School of Pharmacy, Bandung Institute of Technology. Peer-review under responsibility of the School of Pharmacy, Bandung Institute of Technology Keywords: Boesenbergia pandurata, Essential oil, Prenylated flavonoid, Panduratin, Antibacterial * Corresponding author. Tel.: +62-22-2504852 fax: +62-22-2504852 E-mail address:[email protected] 1. Introduction Boesenbergia pandurata Roxb. Schlecht. (Zingiberaceae) is one of the ginger plants that is found in South East Asia. In Indonesia, this geophytic plant is known as “temu kunci”, grows wildly in teak forests, and is cultivated everywhere. This plant has many synonymously botanical names, such as Gastrochilus panduratum RIDL., Kaempferia pandurata Roxb., Curcuma rotunda L., and Boesenbergia rotunda Linn. Mansft 1-3. According to the Indonesian medicinal plants literatures, fresh rhizome of B. pandurata has been long time utilized as spice, particularly, the young rhizome was very popular for seasoning vegetables. It was strongly believed that its efficacy could strengthen the stomach. As a traditional medicine, the sliced rhizomes which are chewed together with areca 1876-6196 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the School of Pharmacy, Bandung Institute of Technology doi: 10.1016/j.proche.2014.12.003 14 Agus Chahyadi et al. / Procedia Chemistry 13 ( 2014 ) 13 – 37 nut (Areca catechu) could treat dry cough and aphtha1,2. As food, in the form of porridge, combination between rhizome and Pimpinella anisum was used to treat stomach distended and as a diuretic for children, while combination with coconut milk was used as anti-anthelmintic. Rhizome of B. pandurata was also used as a traditional medicine for treatment inflammation in women uterus and in combination with other spices, for treatment vaginal infection 2. The rhizome of this plant is a one of the components of herbal medicine “jamu” in Indonesia 4. In the references of herbal preparations published by The National Agency of Drug and Food Control (NA-DFC or BPOM Republik Indonesia), herbal preparation from rhizome of B. pandurata is utilized as an anti-inflammatory 5 and an anti-cancer 6. This plant has been identified to contain various essential oils (EOs) and also several flavonoid compounds that have demonstrated many biological activities. Most of its flavonoids have unique features with some prenyl substituents integrated in their main structures 7,8. A panduratin derivative are prenylated flavonoids from B. pandurata that showed broad range of biological activities, such as strong antibacterial acitivity9-11, anti- inflammatory 12, and anti-cancer 13. The aim of this paper is to present information of the chemical constituents and also to compile various pharmacological studies that is well established from this plant. A second aim is to give a brief view concerning the possibility to produce biological active compounds from B. pandurata through biotechnological approach. All of literatures have been cited from both offline and online media. Offline literatures were based on Handbooks of Indonesian Medicinal Plants, Indonesian Herbal Pharmacopeia, and Herbal Preparations of NA-DFC. Whereas ISI Web, Scopus, Pubmed, and other online media were used to regain any online publications such as scientific journals, patents, etc. All of them were used to compile this paper. 2. Phytochemistry 2.1. Flavonoid Flavonoids are large secondary metabolites found in rhizome of B. pandurata. More than 51 flavonoid compounds from B. pandurata have been isolated and their structure was confirmed. However, only three classes of flavonoid have been reported exist in B. pandurata rhizome. The main flavonoids are chalcones, flavanones, and flavones, classified according to their skeletons (Fig. 1). However some of these flavonoids also exist in other plants. Most of them showed a unique structure with some prenyl substituents integrated in their main skeleton. Interestingly, more than half of total flavonoids isolated from B. pandurata are prenylated flavonoids. But only two classes of flavonoids have prenylated derivative, namely prenylated chalcones and prenylated flavanones. Flavones, however, there is no report that showed the existence of their prenylated derivative in B. pandurata. Fig. 1 Typical class of regular flavonoids in B. pandurata 2.1.1. Unprenylated flavonoids Several known flavonoid chalcones, flavanones, and flavones have been isolated and identified from rhizome extract of B. pandurata. In our review, there are five chalcones and two hydrochalcones, due to the difference of their oxygenation pattern, have been reported (Fig. 2). They are cardamonin (1), a known 2’,4’-dihydroxy-6’- Agus Chahyadi et al. / Procedia Chemistry 13 ( 2014 ) 13 – 37 15 methoxy chalcone 14 and a major chalcone in B. pandurata rhizome 15; pinocembrin chalcone (2), a known 2’,4’,6’- trihydroxychalcone 15; helichrysetin (3), a known 2’,4’,4-trihydroxy-6’-methoxychalcone 16; 2’,6’-dihydroxy-4’- methoxychalcone (4) 14; flavokawain C (5), a known chalcone possessing a 4-oxygenated pattern of A-ring namely 2’,4-hydroxy-4’,6’-dimethoxychalcone 17; and also two known hydrochalcones, namely 2’,4’,6’-trihydroxychalcone (6) and uvangoletin (7) 12. Structural analysis showed that oxygenation pattern in most of these chalcones, except compound 3 and 5, only occurred at B-ring. Fig. 2 Regular chalcones in B. pandurata Flavanones are isomerized products from chalcones. The isomerise of chalcones to form flavanones are naturally due to the presence of chalcone isomerase and also this process still occurs spontaneously even in the absence of this enzyme. Six known flavanones have been isolated from B. pandurata, namely pinostrobin (8), the major flavanone in B. pandurata; pinocembrin (9) 14; 5,7-dimethoxyflavanone (10) 18; alpinetin (11) 19; sakuranetin (12) 7; and 7,4’- dihydroxy-5-methoxyflavanone (13) 17 (Fig. 3). In the Indonesian Herbal Pharmacopeia, compound 8 is used as a marker compound in examination of metabolite profile from botany, extract and herbal preparations of B. pandurata rhizomes 20. Fig. 3 Regular flavanones in B. pandurata Some flavones are also found in black rhizome, another variety of B. pandurata with yellow rhizomes. They are formed through the dehydrogenation and followed by the formation of double bound in C2-C3 of flavanones. There are eight known flavones contained in black rhizome of B. pandurata 18. Tectochrysin (14), 5,7-dimethoxyflavone (15 ), and 5-hydroxy-3,7-dimethoxyflavone (16) are flavones with no oxygenated pattern in A-ring, while the others, 16 Agus Chahyadi et al. / Procedia Chemistry 13 ( 2014 ) 13 – 37 namely 5,7,4’-trimethoxyflavone (17), 5-hydroxy-7,4’-dimethoxyflavone (18), 5,7,3’,4’-tetramethoxyflavone (19), 5-hydroxy-3,7,4’-trimethoxyflavone (20), and 5-hydroxy-3,7,3’,4’-tetramethoxyflavone (21), have oxygenated pattern in their A-ring. However, only compounds 16, 20, and 21 have methoxy constituents in C3 position (Fig. 4). According to this report, the chemical constituents in black rhizome differ substantially to B. pandurata with yellow/red rhizomes, the main plant that is reported in this review. So far, only compound 14 that was successfully isolated again in yellow rhizomes 17, the rest, there is no more report that showed these flavones were isolated again. Fig. 4 Regular flavones in B. pandurata 2.1.2. Prenylated flavonoids Unlike the other Zingiberaceae plants, most of the flavonoids from B. pandurata are very distinctive due to the prenyl substituents in their main skeleton. More than 31 prenylated flavonoids have been isolated from rhizome of B. pandurata (Fig. 5). Boesenbergin A (22) is a first prenylated flavonoid isolated from this plant by Tuntiwachwuttikul’s
Recommended publications
  • Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs Against Drug-Resistant Candida Sp
    antibiotics Review Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp. Anna Herman 1,* and Andrzej Przemysław Herman 2 1 Faculty of Health Sciences, Warsaw School of Engineering and Health, Bitwy Warszawskiej 1920 18 Street, 02-366 Warsaw, Poland 2 Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-856-70-44; Fax: +48-22-646-34-18 Abstract: Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective anti- fungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug- resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described. Citation: Herman, A.; Herman, A.P. Herbal Products and Their Active Keywords: herbalproducts; herbal active constituents; drug-resistant Candida sp.; antifungal drug Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp.
    [Show full text]
  • Introduction Common Gynecologic Ailments Could Be Menstrual Period
    สมนุ ไพรสำ หรบั โรคสตรที ใี่ ชโ้ ดยหมอพนื้ บำ้ นในจงั หวดั นครนำยก The Use of Medicinal Plants for Gynecologic Ailments by Thai Traditional Folk Healers in Nakhonnayok Province นิพนธ์ต้นฉบ ับ Original Article วรพรรณ สทิ ธถิ าวร1*, ลลิตา วีระเสถียร1 และ ชไมพร อ ้นสว่าง2 Worapan Sitthithaworn1*, Lalita Weerasathien1 and Chamaiporn Onsawang2 1 สาขาเภสชั เวท คณะเภสชั ศาสตร ์ มหาวิทยาลัยศรีนครินทรวิโรฒ อ.องครักษ์ จ.นครนายก 26120 1 Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkarak, 2 งานแพทย์แผนไทย กลุ่มงานคุม้ ครองผูบ้ รโิ ภคและเภสชั สาธารณสขุ ส านักงานสาธารณสขุ จังหวัดนครนายก Nakonnayok 26120, Thailand 2 อ.เมือง จ.นครนายก 26000 Thai Traditional Medicine Unit, Division of Consumer Protection and Public Health Pharmacy, Nakhonnayok Public Health Administration Office, Muang, Nakonnayok 26000, Thailand * Corresponding author: [email protected] * Corresponding author: [email protected] วำรสำรไทยเภสชั ศำสตรแ์ ละวทิ ยำกำรสุขภำพ 2562;14(3):111-121. Thai Pharmaceutical and Health Science Journal 2019;14(3):111-121. บทค ัดย่อ Abstract วัตถุประสงค์: เพื่อระบุสมุนไพรที่หมอพื้นบ้านในจังหวัดนครนายกใช้รักษาโรค Objective: To determine medicinal plants used by folk healers in สตรีในกลุ่มอาการไข้ทับระดู ปวดประจาเดือน ประจาเดือนมาไม่ปกติ และตกขาว Nakhonnayok province for gynecological ailments including pelvic และศึกษาความสัมพันธ์ของสรรพคุณสมุนไพรกับผลการศึกษาฤทธทิ์ างเภสชั inflammatory disease (menstrual fever), dysmenorrhea, oligomenorrhea and วิทยาที่มีรายงานไว้ วิธีการศึกษา: การวิจัยเชิงคุณภาพนี้เก็บข้อมูลโดยการ
    [Show full text]
  • Therapeutic Effects of Bossenbergia Rotunda
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Therapeutic Effects of Bossenbergia rotunda S. Aishwarya Bachelor of Dental Surgery, Saveetha Dental College and Hospitals Abstract: Boesenbergia rotunda (L.) (Fingerroot), formerly known as Boesenbergia or Kaempferiapandurata (Roxb). Schltr. (Zingiberaceae), is distributed in south-east Asian countries, such as Indonesia, Malaysia and Thailand. The rhizomes of this plant have been used for the treatment of peptic ulcer, as well as colic, oral diseases, urinary disorders, dysentery and inflammation. As people have started to focus more on natural plants species for their curative properties. B. rotunda is a native ingredient in many Asian countries and is used as a condiment in food. It is also used as traditional medicine to treat several illnesses, consumed as traditional tonic especially after childbirth, beauty aid for teenage girls, and as a leukorrhea preventive remedy for women. Its fresh rhizomes are also used to treat inflammatory diseases, in addition to being used as an antifungal, antiparasitic, and aphrodisiac among Thai folks. Moreover, AIDS patients self-medicate themselves with B. rotunda to cure the infection. With the advancement in technology, the ethnomedicinal usages of herbal plants can be explained through in vitro and in vivo studies to prove the activities of the plant extracts. The current state of research on B. rotunda clearly shows that the isolated bioactive compounds have high potential in treating many diseases. Keywords: Zingerberaceae, anti fungal, anti parasitic, Chalcones, flavonoids. 1. Introduction panduratin derivative are prenylated flavonoids from B. pandurata that showed broad range of biological activities, Boesenbergia rotunda is a ginger species that grows in such as strong antibacterial acitivity9-11, anti- inflammatory Southeast Asia, India, Sri Lanka, and Southern China.
    [Show full text]
  • Micropropagation-An in Vitro Technique for the Conservation of Alpinia Galanga
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2014, 5(3):259-263 ISSN: 0976-8610 CODEN (USA): AASRFC Micropropagation-an in vitro technique for the conservation of Alpinia galanga Nongmaithem M. Singh 1, Lukram A. Chanu 1, Yendrembam P. Devi 1, Wahengbam R.C. Singh 2 and Heigrujam B. Singh 2 1DBT-Institutional Biotech Hub, Pettigrew College, Ukhrul, Manipur 2DBT- Institutional Biotech Hub, Deptt. of Biotechnology, S.K. Women’s College, Nambol, Manipur _____________________________________________________________________________________________ ABSTRACT This study was conducted to develop an efficient protocol for mass propagation of Alpinia galanga L. Explants from rhizome buds were cultured on Murashige and Skoog (MS) medium supplemented with 6-Benzylaminopurine (BAP) alone (0 to 5 mg/l) or a combination of BAP (0 to 5 mg/l) and indole 3-acetic acid (IAA) (0 to 2 mg/l). MS medium supplemented with a combination of 5.0 mg/l BAP and 2.0 mg/l IAA or 3.0 mg/l BAP and 0.5 mg/l IAA produced the highest mean number of shoots per explant as compared to other concentrations. The best shoot length was obtained on the medium containing 1.0 mg/l of BAP and 2.0 mg/l IAA. Thus, combined effects of BAP and IAA improved significantly the shoot growth and proliferation. MS medium supplemented with a combination of 5.0 mg/l BAP and 2 mg/l IAA gave the highest number of roots. However, longest roots per explant were obtained with 1.0 mg/l BAP alone.
    [Show full text]
  • Various Terminologies Associated with Areca Nut and Tobacco Chewing: a Review
    Journal of Oral and Maxillofacial Pathology Vol. 19 Issue 1 Jan ‑ Apr 2015 69 REVIEW ARTICLE Various terminologies associated with areca nut and tobacco chewing: A review Kalpana A Patidar, Rajkumar Parwani, Sangeeta P Wanjari, Atul P Patidar Department of Oral and Maxillofacial Pathology, Modern Dental College and Research Center, Indore, Madhya Pradesh, India Address for correspondence: ABSTRACT Dr. Kalpana A Patidar, Globally, arecanut and tobacco are among the most common addictions. Department of Oral and Maxillofacial Pathology, Tobacco and arecanut alone or in combination are practiced in different regions Modern Dental College and Research Centre, in various forms. Subsequently, oral mucosal lesions also show marked Airport Road, Gandhi Nagar, Indore ‑ 452 001, Madhya Pradesh, India. variations in their clinical as well as histopathological appearance. However, it E‑mail: [email protected] has been found that there is no uniformity and awareness while reporting these habits. Various terminologies used by investigators like ‘betel chewing’,‘betel Received: 26‑02‑2014 quid chewing’,‘betel nut chewing’,‘betel nut habit’,‘tobacco chewing’and ‘paan Accepted: 28‑03‑2015 chewing’ clearly indicate that there is lack of knowledge and lots of confusion about the exact terminology and content of the habit. If the health promotion initiatives are to be considered, a thorough knowledge of composition and way of practicing the habit is essential. In this article we reviewed composition and various terminologies associated with areca nut and tobacco habits in an effort to clearly delineate various habits. Key words: Areca nut, habit, paan, quid, tobacco INTRODUCTION Tobacco plant, probably cultivated by man about 1,000 years back have now crept into each and every part of world.
    [Show full text]
  • C-23 Phytochemical of Kaempferia Plant And
    Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014 C-23 PHYTOCHEMICAL OF KAEMPFERIA PLANT AND BIOPROSPECTING FOR CANCER TREATMENT Sri Atun Chemistry education Faculty of Mathematical and Natural Science, Yogyakarta State University, Jl. Colombo No. 1 Yogyakarta, Indonesia, 55281 e-mail : [email protected] ABSTRACT Kaempferia genus is perennial member of the Zingiberaceae family and is cultivated in Indonesia and other parts of Southeast Asia. Number of studies has been conducted, providing information related to Kaempferia as antioxidant; antimutagenic; and chemopreventive agent. This paper reports some isolated compounds from this plant, biological activity, and bioprospecting for cancer treatment. Keyword: Cancer treatment; Kaempferia; Zingiberaceae INTRODUCTION Kaempferia is a genus, belong to family of Zingiberaceae. This plant grows in Southeast Asia, India, Sri Lanka, Indonesia, and Southem China. Kaempferia genus sinonim with Boesenbergia genus by Baker. This plant has 8 different botanical names which are Boesenbergia cochinchinensis (Gagnep.) Loes., Boesenbergia pandurata (Roxb.) Schltr., Curcuma rotunda L., Gastrochilus panduratus (Roxb.) Ridl., Gastrochilus rotundus (L.) Alston, Kaempferia cochinchinensis Gagnep., Kaempferia ovate Roscoe, Kaempferia galanga, Kaempferia rotunda, and Kaempferia pandurata Roxb nonetheless it is currently known as Boesenbergia rotunda (L.)Mansf (Tan Eng-Chong, et. al, 2012). The plants grown naturally in damp, shaded parts of the lowland or on hill slopes, as scattered plants or thickets. Economically important species among the plant families, the Zingiberaceae, which are perennial rhizomatous herbs, contain volatile oil and other important compounds of enormous medicinal values (Singh C.B., 2013). Phytochemical and biologycal activities of some species of Kaempferia Phytochemical and biologycal some species of plants of the genus Kaempferia reported by many researchers, among others: 1.
    [Show full text]
  • Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant
    molecules Review Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review Javad Mottaghipisheh 1,* and Marcello Iriti 2,* 1 Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary 2 Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy * Correspondence: [email protected] (J.M.); [email protected] (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.) Academic Editor: Francesco Cacciola Received: 20 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Flavonoids are considered one of the most diverse phenolic compounds possessing several valuable health benefits. The present study aimed at gathering all correlated reports, in which Sephadex® LH-20 (SLH) has been utilized as the final step to isolate or purify of flavonoid derivatives among all plant families. Overall, 189 flavonoids have been documented, while the majority were identified from the Asteraceae, Moraceae, and Poaceae families. Application of SLH has led to isolate 79 flavonols, 63 flavones, and 18 flavanones. Homoisoflavanoids, and proanthocyanidins have only been isolated from the Asparagaceae and Lauraceae families, respectively, while the Asteraceae was the richest in flavones possessing 22 derivatives. Six flavones, four flavonols, three homoisoflavonoids, one flavanone, a flavanol, and an isoflavanol have been isolated as the new secondary metabolites. This technique has been able to isolate quercetin from 19 plant species, along with its 31 derivatives. Pure methanol and in combination with water, chloroform, and dichloromethane have generally been used as eluents. This comprehensive review provides significant information regarding to remarkably use of SLH in isolation and purification of flavonoids from all the plant families; thus, it might be considered an appreciable guideline for further phytochemical investigation of these compounds.
    [Show full text]
  • |||||||IIIIHIIII US005411733A United States Patent 19 11 Patent Number: 5,411,733 Hozumi Et Al
    |||||||IIIIHIIII US005411733A United States Patent 19 11 Patent Number: 5,411,733 Hozumi et al. 45 Date of Patent: May 2, 1995 54 ANTIVIRAL AGENT CONTAINING CRUDE 2442633 6/1980 France ......................... A61K 35/78 DRUG 2446110 8/1980 France ......................... A61K 37/02 2078753 1/1982 United Kingdom ........ A61K 35/78 76 Inventors: Toyoharu Hozumi, 30-9, 8805304 7/1988 WIPO ......................... A6K 35/78 Toyotamakita 5-chome, Nerima-ku, Tokyo; Takao Matsumoto, 1-31, OTHER PUBLICATIONS Kamiimaizumi 6-chome, Ebina-shi, Ito et al., Antiviral Research, 7, 127-137 (1987). Kanagawa; Haruo Ooyama, 89-203, Hudson, Antiviral Research, 12, 55-74 (1989). Tsurugamine 1-chome, Asahi-ku, Field et al., Antiviral Research, 2, 243-254 (1982). Yokohama-shi, Kanagawa; Tsuneo The Lancet, Mar. 28, 1981, 705–706 “Viruses and Duo Namba, 1-104, 2556-4, dena Ulcer’. Gofukusehiro-cho, Toyama-shi, Sydiskis et al. Antimircrobial Agents and Chemother Toyama; Kimiyasu Shiraki, 2-202, apy, 35(12), 2463-2466 (1991). 2556-4, Gofukusuehiro-cho, Yamamoto et al., Antiviral Research 12, 21-36 (1989). Toyama-shi, Toyama; Masao Tang et al., Antiviral Research, 13, 313-325 (1990). Hattori, 2-203, 2556-4, Fukuchi et al., Antiviral Research, 11, 285-297 (1989). Gofukusuehiro-cho, Toyama-shi, Amoros et al., Antiviral Research, 8, 13–25 (1987). Toyama; Masahiko Kurokawa, 2-101, Shiraki, Intervirology, 29, 235-240 (1988). 2-2, Minamitaikouyama, Takechi et al., Planta Medica, 42, 69-74 (1981). Kosugi-machi, Imizu-gun, Toyama; Nagai et al., Biochemical and Biophysical Research Shigetoshi Kadota, 2-402, 2556-4, Communications, 163(1), 25-31 (1989). Gofukusuehiro-cho, Toyama-shi, Ono et al., Biomed & Pharmacother, 44, 13-16 (1990).
    [Show full text]
  • Vasorelaxant Effect of Boesenbergia Rotunda and Its Active Ingredients
    plants Article Vasorelaxant Effect of Boesenbergia rotunda and Its Active Ingredients on an Isolated Coronary Artery 1, 1, 1 1 2 Deepak Adhikari y, Dal-Seong Gong y, Se Hee Oh , Eun Hee Sung , Seung On Lee , Dong-Wook Kim 2, Min-Ho Oak 1,* and Hyun Jung Kim 1,* 1 College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, Korea; [email protected] (D.A.); [email protected] (D.-S.G.); [email protected] (S.H.O.); [email protected] (E.H.S.) 2 Department of Oriental Medicine Resources, Mokpo National University, Muan-gun 58554, Korea; [email protected] (S.O.L.); [email protected] (D.-W.K.) * Correspondence: [email protected] (M.-H.O.); [email protected] (H.J.K.); Tel.: +82-61-450-2681 (M.-H.O.); +82-61-450-2686 (H.J.K.) The authors contributed to this work equally. y Received: 4 November 2020; Accepted: 27 November 2020; Published: 1 December 2020 Abstract: Cardiovascular diseases are a major cause of death in developed countries. The regulation of vascular tone is a major approach to prevent and ameliorate vascular diseases. As part of our ongoing screening for cardioprotective natural compounds, we investigated the vasorelaxant effect of rhizomes from Boesenbergia rotunda (L.) Mansf. [Boesenbergia pandurata (Roxb.) Schltr.] used as a spice and herbal medicine in Asian countries. The methanol extract of B. rotunda rhizomes (BRE) exhibited significant vasorelaxation effects ex vivo at EC values of 13.4 6.1 µg/mL and 40.9 7.9 µg/mL, 50 ± ± respectively, with and without endothelium in the porcine coronary artery ring.
    [Show full text]
  • Thai Zingiberaceae : Species Diversity and Their Uses
    URL: http://www.iupac.org/symposia/proceedings/phuket97/sirirugsa.html © 1999 IUPAC Thai Zingiberaceae : Species Diversity And Their Uses Puangpen Sirirugsa Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand Abstract: Zingiberaceae is one of the largest families of the plant kingdom. It is important natural resources that provide many useful products for food, spices, medicines, dyes, perfume and aesthetics to man. Zingiber officinale, for example, has been used for many years as spices and in traditional forms of medicine to treat a variety of diseases. Recently, scientific study has sought to reveal the bioactive compounds of the rhizome. It has been found to be effective in the treatment of thrombosis, sea sickness, migraine and rheumatism. GENERAL CHARACTERISTICS OF THE FAMILY ZINGIBERACEAE Perennial rhizomatous herbs. Leaves simple, distichous. Inflorescence terminal on the leafy shoot or on the lateral shoot. Flower delicate, ephemeral and highly modified. All parts of the plant aromatic. Fruit a capsule. HABITATS Species of the Zingiberaceae are the ground plants of the tropical forests. They mostly grow in damp and humid shady places. They are also found infrequently in secondary forest. Some species can fully expose to the sun, and grow on high elevation. DISTRIBUTION Zingiberaceae are distributed mostly in tropical and subtropical areas. The center of distribution is in SE Asia. The greatest concentration of genera and species is in the Malesian region (Indonesia, Malaysia, Singapore, Brunei, the Philippines and Papua New Guinea) *Invited lecture presented at the International Conference on Biodiversity and Bioresources: Conservation and Utilization, 23–27 November 1997, Phuket, Thailand.
    [Show full text]
  • 1 1 2 Trends in Lc-Ms and Lc-Hrms Analysis And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diposit Digital de la Universitat de Barcelona 1 2 3 TRENDS IN LC-MS AND LC-HRMS ANALYSIS AND CHARACTERIZATION OF 4 POLYPHENOLS IN FOOD. 5 6 Paolo Lucci1, Javier Saurina 2,3 and Oscar Núñez 2,3,4 * 7 8 9 1Department of Food Science, University of Udine, via Sondrio 2/a, 33100 Udine, Italy 10 2Department of Analytical Chemistry, University of Barcelona. Martí i Franquès, 1-11, 11 E-08028 Barcelona, Spain. 12 3 Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, 13 Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), E-08921 Santa Coloma de Gramenet, 14 Barcelona, Spain. 15 4 Serra Húnter Fellow, Generalitat de Catalunya, Spain. 16 17 18 19 20 * Corresponding author: Oscar Núñez 21 Department of Analytical Chemistry, University of Barcelona. 22 Martí i Franquès, 1-11, E-08028 Barcelona, Spain. 23 Phone: 34-93-403-3706 24 Fax: 34-93-402-1233 25 e-mail: [email protected] 26 27 28 29 30 31 1 32 33 34 35 Contents 36 37 Abstract 38 1. Introduction 39 2. Types of polyphenols in foods 40 2.1. Phenolic acids 41 2.2. Flavonoids 42 2.3. Lignans 43 2.4. Stilbenes 44 3. Sample treatment procedures 45 4. Liquid chromatography-mass spectrometry 46 5. High resolution mass spectrometry 47 5.1. Orbitrap mass analyzer 48 5.2. Time-of-flight (TOF) mass analyzer 49 6. Chemometrics 50 6.1.
    [Show full text]
  • Zingiberaceae) from Thailand and Lao P.D.R
    Gardens' Bulletin Singapore 71 (2): 477–498 2019 477 doi: 10.26492/gbs71(2).2019-15 Three new species of Boesenbergia (Zingiberaceae) from Thailand and Lao P.D.R. J.D. Mood1, †J.F. Veldkamp2, T. Mandáková3, L.M. Prince4 & H.J. de Boer5 1 Lyon Arboretum, University of Hawaii, 3860 Manoa Road, Honolulu, Hi 96822, USA. [email protected] 2 Naturalis Biodiversity Center, Section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands 3 CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic 4 The Field Museum, Department of Botany, 1400 S Lake Shore Dr., Chicago, IL 60605, USA 5 Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway ABSTRACT. Boesenbergia bella Mood & L.M.Prince, B. phengklaii Mood & Suksathan, and B. putiana Mood & L.M.Prince are described with photographs and a comparative table. The description of Boesenbergia petiolata Sirirugsa is revised to include morphology not previously noted. Molecular phylogenetic analyses of the relevant taxa using plastid and nuclear DNA sequence data are provided. Keywords. Boesenbergia bella, B. petiolata, B. phengklaii, B. putiana, chromosome counts, nrITS, molecular phylogeny, trnK, Vietnam Introduction Beginning in 2010, a taxonomic update of Boesenbergia (Zingiberaceae) was initiated for the Flora of Thailand project. The research model was based on a species by species review of those currently recorded in Thailand. The study of each included the protologue, types and all similar specimens, history, field and ex situ data, results of molecular phylogenetic analyses, and photography. The first to be studied was Boesenbergia longiflora (Wall.) Kuntze which resulted in the description of five new species (Mood et al., 2013).
    [Show full text]