Position in the Cladogram on P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies of West Malesian Agrostophyllum Blume (Orchidaceae)
Taiwania, 57(3): 251-262, 2012 Studies of West Malesian Agrostophyllum Blume (Orchidaceae) Paul Ormerod P.O. Box 8210, Cairns 4870, Queensland, Australia. Email: [email protected] (Manuscript received 6 March 2012; accepted 20 March 2012) ABSTRACT: Studies of West Malesian material of the genus Agrostophyllum reveals that three previously described species should be treated as new synonyms of earlier named entities, namely A. arundinaceum Ridl. (= A. cyathiforme J.J.Sm.), A. mearnsii Ames (= A. globiceps Schltr.) and A. wenzelii Ames (= A. glumaceum Hook.f.). However A. formosanum Rolfe is found to be a good species, distinct from A. inocephalum (Schauer) Rchb.f. On the other hand five new taxa have been recognised and are proposed here, namely A. asahanense, A. boeeanum, A. galeandrae, A. maliauense and A. pseudolaxum. KEY WORDS: Malesia, Agrostophyllum, new species. INTRODUCTION (Holotype: AMES!). The genus Agrostophyllum Blume currently Affinis A. djaratense Schltr. sed sepalis brevioribus contains about 102 species (new taxa included) (2.75-3.80 vs. 5 mm), epichilo ovato-suborbicularis, distributed from the Seychelles to Samoa. New Guinea bipulvinatis et angustioribus (non cordatis, excavatis et is the centre of diversity with about 57 named taxa, 4.5 vs. 1.75-2.00 mm latis) differt. though my own studies indicate another 20 (including five infraspecific taxa) require description from that Roots and rhizome not seen. Stem terete basally, island. In West Malesia [Malaysia, Western Indonesia compressed above, upper half sublaxly leafy, 66.3 cm (Sumatra, Java, Kalimantan), Brunei and the long, 0.3 cm thick basally, 1.0-1.2 cm wide across Philippines] there are about 28 accepted taxa, to which upper sheaths. -
Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Species Diversity of Orchids in Bukit Barisan Selatan National Park, Lampung, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 1, January 2019 E-ISSN: 2085-4722 Pages: 343-349 DOI: 10.13057/biodiv/d200140 Species diversity of Orchids in Bukit Barisan Selatan National Park, Lampung, Indonesia ESTI MUNAWAROH♥, YUZAMMI♥♥ Center for Plant Conservation Botanic Gardens, Indonesia Institut of Sciences. Jl. Ir. H. Juanda 13, Bogor 16122, West Java, Indonesia Tel./fax. +62-251-8322187 ♥email: [email protected] ♥♥ [email protected] Manuscript received: 28 September 2018. Revision accepted: 30 December 2018. Abstract. Munawaroh E, Yuzammi. 2019. Species diversity of Orchids in Bukit Barisan Selatan National Park, Lampung, Indonesia. Biodiversitas 20: xxxx. Orchids, belonging to the family Orchidaceae, are well known ornamental plants due to their beautiful flowers and varied colors. The members of this family have received more scientific attention than other plant families because of their unique botanical features and economic value. This study was conducted to explore and record the species diversity of Orchidaceae in Sumatera, especially in the Bukit Barisan Selatan National Park (BBSNP), Lampung, Indonesia. This research was carried out from 2011 to 2014 at four locations, namely Kubu Perahu Resort, Sukaraja Atas Resort, Pugung Tampak Resort and Sekincau Resort, using purposive sampling method. A total of 132 species belonging to 52 genera of orchids have been identified from BBSNP, Lampung, of which 37 genera are epiphytic orchids and 15 genera are terrestrial orchids. Two species namely, Vanda sumatrana and Grammatophyllum speciosum, have been recognized as protected species. Vanda sumatrana is also endemic to Sumatera. These orchids are also cultivated at Liwa Botanic Garden, as an ex situ conservation. -
State of the World's Minorities and Indigenous Peoples 2016 (MRG)
State of the World’s Minorities and Indigenous Peoples 2016 Events of 2015 Focus on culture and heritage State of theWorld’s Minorities and Indigenous Peoples 20161 Events of 2015 Front cover: Cholitas, indigenous Bolivian Focus on culture and heritage women, dancing on the streets of La Paz as part of a fiesta celebrating Mother’s Day. REUTERS/ David Mercado. Inside front cover: Street theatre performance in the Dominican Republic. From 2013 to 2016 MRG ran a street theatre programme to challenge discrimination against Dominicans of Haitian Descent in the Acknowledgements Dominican Republic. MUDHA. Minority Rights Group International (MRG) Inside back cover: Maasai community members in gratefully acknowledges the support of all Kenya. MRG. organizations and individuals who gave financial and other assistance to this publication, including the Ministry for Foreign Affairs of Finland. © Minority Rights Group International, July 2016. All rights reserved. Material from this publication may be reproduced for teaching or other non-commercial purposes. No part of it may be reproduced in any form for Support our work commercial purposes without the prior express Donate at www.minorityrights.org/donate permission of the copyright holders. MRG relies on the generous support of institutions and individuals to help us secure the rights of For further information please contact MRG. A CIP minorities and indigenous peoples around the catalogue record of this publication is available from world. All donations received contribute directly to the British Library. our projects with minorities and indigenous peoples. ISBN 978-1-907919-80-0 Subscribe to our publications at State of www.minorityrights.org/publications Published: July 2016 Another valuable way to support us is to subscribe Lead reviewer: Carl Soderbergh to our publications, which offer a compelling Production: Jasmin Qureshi analysis of minority and indigenous issues and theWorld’s Copy editing: Sophie Richmond original research. -
LCSH Section H
H (The sound) H.P. 115 (Jet planes) Ha ʻIvri (The Hebrew word) [P235.5] USE Handley Page 115 (Jet planes) USE ʻIvri (The Hebrew word) BT Consonants H.P.11 (Bomber) Hà lăng (Southeast Asian people) Phonetics USE Handley Page Type O (Bomber) USE Sedang (Southeast Asian people) H-2 locus H.P.12 (Bomber) Ha language (May Subd Geog) UF H-2 system USE Handley Page Type O (Bomber) UF Abaha language BT Immunogenetics H.P. Sutton House (McCook, Neb.) Abuja language H 2 regions (Astrophysics) USE Sutton House (McCook, Neb.) Giha language USE H II regions (Astrophysics) H.R. 10 plans Ikiha language H-2 system USE Keogh plans Kiha language USE H-2 locus H.R.D. motorcycle BT Bantu languages H-8 (Computer) USE Vincent H.R.D. motorcycle Tanzania—Languages USE Heathkit H-8 (Computer) H-R diagrams Ha-le-ma-no (Legendary character) H-34 Choctaw (Military transport helicopter) USE HR diagrams USE Hale-mano (Legendary character) USE Choctaw (Military transport helicopter) H regions (Astrophysics) Hạ Long Bay (Vietnam) H-43 (Military transport helicopter) (Not Subd Geog) USE H II regions (Astrophysics) UF Halong Bay (Vietnam) UF Huskie (Military transport helicopter) H.S.C. Examination (N.S.W.) Vịnh Hạ Long (Vietnam) Kaman H-43 Huskie (Military transport USE Higher School Certificate Examination (N.S.W.) BT Bays—Vietnam helicopter) Ḥ. Safadi (Israel) Ha Makhopo Valley (Lesotho) Pedro (Military transport helicopter) USE Safadi (Extinct city) BT Valleys—Lesotho BT Military helicopters H-spaces ha-Mitlah, Maʻavar (Egypt) H-53 (Military transport helicopter) [QA612.77] USE Mitla Pass (Egypt) USE Sikorsky H-53 (Military transport helicopter) UF Hopf spaces Hà Nhì (Asian people) H-60 (Military transport helicopter) Spaces, Hopf USE Hani (Asian people) USE Black Hawk (Military transport helicopter) BT Topological groups Hà-nhì language H.263 (Video coding standard) H Street (Washington, D.C.) USE Hani language UF ITU H.263 (Video coding standard) This heading is not valid for use as a geographic Ha-ni (Asian people) ITU-T Recommendation H.263 (Video coding subdivision. -
Notes on Philippine Orchids with Descriptions of New Species, 1.^=
NOTES ON PHILIPPINE ORCHIDS WITH DESCRIPTIONS OF NEW SPECIES, I. By Oakes Ames, A. M., F. L. S. Director of the Botanic Garden of Harvard University. (From the Ames Botanical Laboratory, North Easton, Mass.. U. S. A.) Reprinted from THE PHILIPPINE JOURNAL OF SCIENCE Published by the Bureau of Science of the Philippine Government, Manila, P. I. Vol. IV, No. 5, Section C, Botany, November, 1909 MANILA BUREAU OF PRINTING 1909 S921C THE PHILIPPINE Journal of Sciench C. Botany Vol. IV NOVEMBER, 1909 No. 5 NOTES ON PHILIPPINE ORCHIDS WITH DESCRIPTIONS OF NEW SPECIES, 1.^= By Oakes Ames. (From the Ames Botanical Laboratory, Worth Easton, Mass., U. S. A.) Tt has been suggested by Dr. Fritz Kranzliu that the species of Dcn~ drochilum which I have assigned to the section Acoridmm ought to constitute a distinct genus. Dr. Kriinzlin asserts that the form of the labellum is quite distinctive in Acoridiuin on account of its likeness to the letter E. When I studied DendrochiluDi tenclhun in the preparation of Fascicle I of ^'^Orchidaceae" I felt strongly that it belonged to a genus entirely distinct from DendrocliUum because of the absence of stelidia from the column and of the peculiar subfiliform leaves. Since then I have been convinced by a study of more material that Acoridiuin belongs to DendrocliiJum. In the first place, the E-formed labellum on which Dr. Kranzlin lays emphasis is only characteristic of a majority of the species of the section Acoridiuin and is not found in D. turpe, D. oligan- fJiun), D. ]ia.'<fatum, I). McrrilJii and 1). -
New Names and Combinations in Orchidaceae from the Philippines and New Guinea
BLUMEA 48: 507– 514 Published on 28 November 2003 doi: 10.3767/000651903X489500 NEW NAMES AND COMBINATIONS IN ORCHIDACEAE FROM THE PHILIPPINES AND NEW GUINEA A. SCHUITEMAN & E.F. DE VOGEL Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands SUMMARY New names and combinations are proposed for species of the orchid genera Bulbophyllum, Dendro bium, Flickingeria, Glomera, Octarrhena and Trichotosia. The genera Ischnocentrum and Sepalosi phon are synonymised with Glomera, while Chitonanthera is synonymised with Octarrhena. Key words: Orchidaceae, New Guinea, The Philippines, nomenclature, taxonomy. INTRODUCTION In the course of producing CD-ROMs on Orchidaceae for the Flora Malesiana project (Schuiteman & De Vogel, 2001, 2002; Agoo et al., 2003), it became apparent that a number of new names or combinations were required. As dissemination in electronic media does not constitute valid publication under the International Code of Botanical Nomenclature (Greuter et al., 2000, article 29), they are dealt with in the present paper, together with some additional comments where necessary. BULBOPHYLLUM Thouars The two following species of this immense genus require a new name, the first because its original epithet is a later homonym, the second because it was described in the wrong genus. Both are ‘good’ species, to the best of our knowledge. 1. Bulbophyllum apoense Schuit. & de Vogel, nom. nov. Basionym: Bulbophyllum graciliscapum Ames & Rolfe in Ames (1915) 175. — Type: Copeland 1127 (holo AMES; iso K). Not Bulbophyllum graciliscapum Schltr. (1905) 203; Bulbophyllum graciliscapum H. Perrier (1937) 107; Bulbophyllum graciliscapum Summerh. (1954) 579. Distribution — Philippines. Note — This species of section Leptopus Schltr. -
2244-5226 New Distribution Records of Orchids
Journal of Nature Studies 17(2): 1-9 Online ISSN: 2244-5226 NEW DISTRIBUTION RECORDS OF ORCHIDS (ORCHIDACEAE) IN SAMAR ISLAND, PHILIPPINES 1 2 1 Zhereeleen D. Meneses *, Pastor L. Malabrigo, Jr. , Inocencio E. Buot, Jr. , 2 and Crusty E. Tinio 1 Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines 2Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna, Philippines *Corresponding author: [email protected] ABSTRACT – Samar Island’s climatic and edaphic conditions, geographic location, various habitat types and biogeographic history caters many native and endemic orchid species. However, botanical documentation on orchidaceous species on the island is still deficient. A series of orchid inventories from 2013 to 2016 in different forest types of Samar Island, Philippines revealed 23 new distribution records of orchidaceous species representing 16 genera in the island. The genus Bulbophyllum has four newly-recorded species, followed by Dendrobium and Dendrochilum with three species each, while the rest has one species each. Review of their geographic distribution and conservation status revealed that 17 of these species are endemic to the country and five are highly threatened. Keywords: distribution, orchids, Philippines, Samar Island INTRODUCTION Orchids are among the largest and most diverse group among the flowering plants (Dressler 1993). The orchid flora of the Philippines is estimated to be around 1, 100 species of which 80% are endemic in the country (Cootes 2001). Until now, more species are being discovered and more are still awaiting discovery (Cootes and Boos 2013). But with the continuing destruction of tropical forest areas – a major cause of species loss, as well as the uncontrolled poaching of orchids, many species may never be known to the scientific community and to orchid enthusiasts (Sala et al. -
MID-AMERICA ORCHID CLASSIFICATION July 1, 2014 Name Abbreviation Class Species Hybrid a Abaxianthus (See Flickingeria) Abdominea (See Robiquetia) Aberconwayara Acw
MID-AMERICA ORCHID CLASSIFICATION July 1, 2014 Name Abbreviation Class Species Hybrid A Abaxianthus (see Flickingeria) Abdominea (see Robiquetia) Aberconwayara Acw. 13 Aberrantia (see Pleurothallis) Abola (see Caucaea) Acacallis (see Aganisia) Acampe Acp. 68 69 Acampodorum (see Aracampe) Acampostylis Acy. 65 Acanthephippium Aca. 98 99 Acapetalum Acpt. 95 Aceras (see Orchis) Acerasherminium (see Hermorchis) Acianthera Acia. 92 Acianthus Aci. 98 99 Acinbreea Acba. 99 Acineta Acn. 98 99 Acinopetala (see Masdevallia) Aciopea Aip. 99 Acoridium (see Dendrochilum) Acostaea Asa. 92 Acriopsis Acr. 98 99 Acrolophia Apa. 81 Acronia (see Pleurothallis) Acropera (see Gongora) Acrorchis Arr. 98 99 Ada (see Brassia) Adachilum (see Brassochilum) Adacidiglossum Adg. 76 Adacidium (see Brassidium) Adaglossum (see Odontobrassia) Adamara Adm. 17-25 Adapasia (see Brapasia) Adelopetalum (see Bulbophyllum) Adenoncos Ade. 68 69 Adioda (see Brassioda) Adonclioda (see Maccullyara) Adoncostele (see Brascidostele) Aerachnochilus (see Paulsenara) Aerangaeris Arg. 58 Aeranganthes Argt. 58 Aerangis Aergs. 58 Aeranthes Aerth. 68 69 Aerasconetia (see Aeridovanda) Aeridachnanthe Aed. 66 Aeridachnis Aerdns. 66 Aeridanthe (see Aeridovanda) Aerides Aer. 66 Aeridisia (see Luisaerides) Aeriditis (see Aeridopsis) Aeridocentrum (see Aeridovanda) Aeridochilus Aerchs. 66 Aeridofinetia (see Aeridovanda) Aeridoglossum (see Renades) Page 2 Mid-America Orchid Classification, July 1, 2014 Name Abbreviation Class Species Hybrid Aeridoglottis Aegts. 66 Aeridopsis Aerps. 66 Aeridopsisanthe (see Maccoyara) Aeridostachya (see Eria) Aeridovanda Aerdv. 69 Aeridovanisia Aervsa. 66 Aeridsonia (see Aeridovanda) Aeristomanda Atom. 66 Aeroeonia Aoe. 58 Agananthes Agths. 95 Aganax (see Pabanisia) Aganella All. 78 Aganisia Agn. 95 Aganopeste Agt. 93 Agasepalum Agsp. 95 Agrostophyllum Agr. 98 99 Aitkenara Aitk. 95 Alamania Al. 16 25 Alangreatwoodara (see Propabstopetalum) Alantuckerara Atc. 95 Alaticaulia (see Masdevallia) Alatiglossum (see Gomesa) Alcockara (see Ledienara) Alexanderara (see Maclellanara) Aliceara Alcra. -
A Molecular Phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 Inferred from Multiple Nuclear and Chloroplast Regions
YMPEV 5128 No. of Pages 8, Model 5G 28 February 2015 Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx 1 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev 2 Short Communication 6 4 A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 inferred from multiple nuclear and chloroplast regions a,b,1 a,1 b a,b,c,⇑ a,⇑ 8 Long-Hai Zou , Jiu-Xiang Huang , Guo-Qiang Zhang , Zhong-Jian Liu , Xue-Ying Zhuang 9 a College of Forestry, South China Agricultural University, Guangzhou, China 10 b Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of 11 Shenzhen, Shenzhen, China 12 c The Center for Biotechnology and Biomedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China 1314 15 article info abstract 1730 18 Article history: The subtribe Aeridinae, which contains approximately 90 genera, is one of the most diverse and 31 19 Received 12 August 2014 taxonomically puzzling groups in Orchidaceae. In the present study, the phylogenetic relationships of 32 20 Revised 6 January 2015 Aeridinae were reconstructed utilizing five DNA sequences (ITS, atpI-H, matK, psbA-trnH, and trnL-F) from 33 21 Accepted 17 February 2015 211 taxa in 74 genera. The results of the phylogenetic analyses indicate that Aeridinae is monophyletic 34 22 Available online xxxx and that the subtribe can primarily be grouped into 10 clades: (1) Saccolabium clade, (2) Chiloschista 35 clade, (3) Phalaenopsis clade, (4) Thrixspermum clade, (5) Vanda clade, (6) Aerides clade, (7) Trichoglottis 36 23 Keywords: clade, (8) Abdominea clade, (9) Gastrochilus clade, and (10) Cleisostoma clade. -
Classes and Awards List for 2016 Show for Website
Schedule of Classes Sections are the main Alliances or groups of orchids, and are signified with a letter (A for Cattleya alliance, B for Cymbidium, etc.) Classes are subdivisions within Sections, and are signified with a number, e.g., Class A1 for Cattleya species) Levels of skill of Exhibitor: Novice, Intermediate, Advanced and Open. A different colored entry card is used for each category. Plants may be entered in only one class in sections A through I. Plants entered in Sections A through I may also be entered in Sections J or K. A separate entry card must be filled out for each section entered. Plants entered in the incorrect Class may be disqualified from judging. Questions should be directed to the clerks at the plant entry table. A. Cattleya alliance A1. Cattleya species (Catt, Laelia, Rhyncholaelia, Sophro) with flowers of 4” or greater A2. Cattleya species with flowers of less than 4” A3. Cattleya Hybrids (Blc., Slc., Sc., Lc., Bc., Bl., Potinara, etc.) flowers of 4” or larger A4. Cattleya Hybrids (Blc., Slc., Sc., Lc., Bc., Bl., Potinara, etc.) flowers of less than 4” A5. Other Cattleya species (Brassavola, Epidendrum, Encyclia, Broughtonia, Oerstedella, Barkeria, Prosthechea. Anacheilium, Euchile, Panarica. Oestlundia, Dinema, Nidema, etc) A6. Other Cattleya hybrids B. Cymbidium Standard Hybrids - (natural flower spread greater than 3 1/2" on largest flower) B1. White, Cream, Pink, Rose B2. Yellow, Orange, Green, Red Novelty Hybrids - (natural flower spread 1 3/4" to 3 1/2" on largest flower.) B3. White, Cream, pink, Rose B4. Yellow, Orange, Green, Red B5. Miniature Hybrids - all colors (natural flower spread less than 1 3/4" on largest.