Evaluations of Bole Injections for Protecting Engelmann Spruce from Mortality Attributed to Spruce Beetle (Coleoptera: Curculionidae) in the Intermountain West1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
White Spruce (Sw) - Picea Glauca
White spruce (Sw) - Picea glauca Tree Species > White spruce Page Index Distribution Range and Amplitiudes Tolerances and Damaging Agents Silvical Characteristics Genetics and Notes BC Distribution of White spruce (Sw) Range of White spruce An open canopy stand of white spruce and trembling aspen on Morice River alluvial terrace. Pure white spruce stands are infrequent in th fire-disturbed, montane boreal landscape. Geographic Range and Ecological Amplitudes Description White spruce is a medium-sized (occasionally >55 m tall), evergreen conifer, with a fairly symmetrical, conical crown, a regular branching pattern that often extends to the ground, and a smooth, dark gray, scaly bark. The wood of white spruce is light, straight grained, and resilient. It is used primarily for lumber and pulp. Geographic Range Geographic element: North American transcontinental-incomplete Distribution in Western North America: (north) in the Pacific region; north and central in the Cordilleran region Ecological Climatic amplitude: Amplitudes subarctic – subalpine boreal – montane boreal – (cool temperate) Orographic amplitude: montane – subalpine Occurrence in biogeoclimatic zones: SWB, (ESSF), MS, BWBS, SBS, SBPS, (IDF), (ICH), (northern CWH) Edaphic Amplitude Range of soil moisture regimes: (very dry) – moderately dry – slightly dry – fresh – moist – very moist – wet Range of soil nutrient regimes: (very poor) – poor – medium – rich – very rich In the BWBS zone, white spruce grows well on medium and rich sites providing a Moder humus formation exists. Wildfires are the major disturbance factor in re-establishing a white spruce stand when acidic Mors begin to develop, a humus form which favors the regeneration and growth of black spruce. Without the fires, the more shade-tolerant black spruce would become a dominant species and form a climatic climax stand. -
Note by Terry F. Franklin'
Reprinted from FOREST SCIENCE, Volume 10, Number 1, March, 1964 Purchased by the U.S. Forest Service for official use. Color of Immature Cones of Several Pacific Northwest Conifers Note by Terry F. Franklin Abstract. In the Cascade and Coast Ranges carpa") or green cones (variety chlorocai pa") of Oregon and Washington /Thies amabilis, /1. during their lifetime. Picea glauca is also known lasiocarpa, .1. magnifica var. shastensis, .1. pro- to produce either green or reddish-brown im- cera, Picea engelmannii, Pinus monticola, Pseudo- mature cones. tsuga menziesii, and Tsuga mertensiana can pro- Color variation in immature or mature cones duce immature cones either red (or purple) or has not been studied for western conifers but has green in color. Abundance and distribution of incidentally been noted for Pinus ponderosa, the color varies in each species. Variation in P. monticola /Thies concolor", /Thies grandis, 5 and cone coloration on individual trees is related to Tsuga mertensiana.3.5 The species upon which exposure of the cones to sunlight. 2 Crossley, D. 1. Seed maturity in white spruce. Observations throu ghout the Cascade and Coast Can. Dep. Resour. Developm. For. Br. SiIv. Res. Ranges of Oregon and Washington indicate that Note 104. 16 pp. 1953. the immature cones of many conifers are either red (purple) or green, or some intergrade be- 3 Sudworth, G. B. Forest trees of the Pacific tween. For many years European foresters have slope. Forest Serv., U.S. Dept. A gric. 441 pp. recognized two different forms of Picea abies 1908. which hear either red cones (variety "erythro- 4 McMinn, H. -
Detection of Hybrids in Natural Populations of Picea Glauca and P 119
Haselhorst and Buerkle: Detection of Hybrids in Natural Populations of Picea Glauca and P 119 DETECTION OF HYBRIDS IN NATURAL POPULATIONS OF PICEA GLAUCA AND PICEA ENGELMANNII MONIA S.H. HASELHORST C. ALEX BUERKLE UNIVERSITY OF WYOMING LARAMIE ABSTRACT within long-lived forest trees such as conifers (Neale and Ingvarsson 2008). Conifers are a large and highly The geographic borders between related species are often overlapping and much is unknown diverse group of gymnosperms that are distributed about the ecological and evolutionary dynamics widely throughout the world with dominance in the between species in these regions. This is particularly northern hemisphere. Although the geographical true within long-lived forest trees such as conifers. ranges of North American conifers in general are well The spruce species Picea glauca and Picea known, many questions remain about the zones engelmannii were used in this study to elucidate the where species come into geographic contact: whether genetic dimension of their hybridization, as these they hybridize, how widespread hybrids are and how species are ecologically divergent and are known to hybrids and parental species can be accurately hybridize in nature. Opportunities for hybridization identified (Daubenmire 1968; Mallet 2005; occur along elevational gradients where they co- Burgarella et al. 2009). Hybridization and subsequent occur, from northwestern Wyoming north through the backcrosses (i.e., introgression) to parental species central Rocky Mountains and British Columbia. This are known to occur between a number of conifer study was concentrated in the Central Rocky species (e.g., Picea glauca x P. engelmannii, Pinus Mountains in Wyoming including the Greater pumila x P. -
WRA Species Report
Family: Pinaceae Taxon: Picea engelmannii Synonym: Abies engelmannii Parry Common Name: Engelmann spruce Mountain spruce Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -0.5 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Low substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized -
Engelmann Spruce (Se) - Picea Engelmannii
Engelmann spruce (Se) - Picea engelmannii Tree Species > Engelmann spruce Page Index Distribution Range and Amplitiudes Tolerances and Damaging Agents Silvical Characteristics Genetics and Notes BC Distribution of Engelmann spruce (Se) Range of Engelmann spruce An uneven aged, Engelmann spruce dominated old-growth stand (Duffey Lake Road) Geographic Range and Ecological Amplitudes Description Engelmann spruce is one of the four spruce species indigenous to British Columbia. It is a medium- to large-sized (occasionally >50 m tall), evergreen conifer, with a dense, symmetrical, narrow, spire-like crown; lower branches sloping downward; and a thin, gray-brown bark broken into large, loose, coarse, rounded scales. The wood of Engelmann spruce is used for lumber and pulp. Similar to the other spruces, the pulping properties of Engelmann spruce are excellent: long tracheids, light colour, and low content of resins. Geographic Range Geographic element: Western North American/Cordilleran and marginally Pacific Distribution in Western North America: (central) in the Pacific region; central and south in the Cordilleran region Ecological Climatic amplitude: Amplitudes (alpine tundra) - continental subalpine boreal - montane boreal - (cool temperate) Orographic amplitude: montane - subalpine - (alpine) Occurrence in biogeoclimatic zones: (lower AT), (submaritime MH), ESSF, (MS), (upper SBS), (upper IDF), (upper ICH), (upper submaritime CWH) Edaphic Amplitude Range of soil moisture regimes: (moderately dry) - slightly dry - fresh - moist - very moist - wet Range of soil nutrient regimes: (very poor) - poor - medium - rich - very rich The vigorous growth of Engelmann spruce occurs in soils where calcium and magnesium are available in moderate, well-balanced quantities and on sites with Moder and Mull humus formations. Tolerance and Damaging Agents Root System As with other native spruces, Engelmann has a shallow root system, with most Characteristics roots within 50 cm from the ground surface. -
Sitka Spruce and Engelmann Spruce in Northwest California and Across
Sitka spruce and www.conifercountry.com Pinaceae Engelmann spruce in Sitka spruce Picea sitchensis perennial cones have scales which are soft to the touch—a stark contrast to northwest California and the prickly needles bark has flakey, circular platelets— across the West sun bleached in a dune forrest Bark: thin with circular platelets that flake off; depending on age, color ranges from pale brown when young to dark brown when older (if you can see under mosses). Needles: 1”, dark green, very sharp at the tip, radiate from stem in all directions, tend to point forward (similar to Engelmann), stomatal bloom on underside of needle. Cones: 1”-3”, yellow when young aging to tan; scales are thin and papery with rounded tips Habitat: coastal, wet, 0’-1000’ www.conifercountry.com Pinaceae Engelmann spruce Picea engelmannii short needles are the sharpest of any conifer in the Klamath Mountains bases of trees are buttressed, offering comfortable seating to revel in the conifer diversity of the Russian Wilderness Bark: purplish to reddish-brown, thin, loosely attached circular scales appearing much darker than those of Brewer spruce Needles: one inch long, pointed at tip, roll in fingers, very sharp, with branches often growing upward Cones: 1”-2”, Range* map for: Engelmann spruce (Picea engelmannii) bearing flexible papery scales with irregular, ragged tips, softer tips than Brewer Sitka spruce (Picea sitchensis) spruce Habitat: 3500’-6000’, riparian CA Range: drainages around Russian Peak in the Russian Wilderness, often dominating; also, Clark and Hat creeks in Shasta * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) County www.conifercountry.com Michael Kauffmann | www.conifercountry.com Range* map for: Engelmann spruce (Picea engelmannii) Sitka spruce (Picea sitchensis) * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Michael Kauffmann | www.conifercountry.com. -
Myodes Gapperi) in New Hampshire Forests
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2018 HOME RANGE AND MICROHABITAT ASSOCIATIONS OF THE SOUTHERN RED-BACKED VOLE (MYODES GAPPERI) IN NEW HAMPSHIRE FORESTS Honora Tisell University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Tisell, Honora, "HOME RANGE AND MICROHABITAT ASSOCIATIONS OF THE SOUTHERN RED-BACKED VOLE (MYODES GAPPERI) IN NEW HAMPSHIRE FORESTS" (2018). Master's Theses and Capstones. 1212. https://scholars.unh.edu/thesis/1212 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. HOME RANGE AND MICROHABITAT ASSOCIATIONS OF THE SOUTHERN RED- BACKED VOLE (MYODES GAPPERI) IN NEW HAMPSHIRE FORESTS BY HONORA BARBARA TISELL Bachelor of Science in Wildlife, Fish, and Conservation Biology, University of California, Davis, 2014 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Natural Resources: Wildlife and Conservation Biology September, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Natural Resources: Wildlife and Conservation Biology by: Thesis Director, Dr. Rebecca Rowe, Associate Professor, Natural Resources and the Environment Dr. Allyson Degrassi, Post-doctoral Researcher, Natural Resources and the Environment Dr. Russell G. -
List of Plants for Great Sand Dunes National Park and Preserve
Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present -
Size-Mediated Tree Transpiration Along Soil Drainage Gradients in a Boreal Black Spruce Forest Wildfire Chronosequence
Tree Physiology 32, 599–611 doi:10.1093/treephys/tps021 Research paper Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence J.L. Angstmann1,3, B.E. Ewers1 and H. Kwon2 Downloaded from 1Department of Botany, Program in Ecology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82072, USA; 2Yonsei University, Seoul, Korea; 3Corresponding author ([email protected]) Received September 23, 2011; accepted February 24, 2012; published online April 25, 2012; handling Editor Nathan Phillips http://treephys.oxfordjournals.org/ Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four at University of Wyoming Libraries on June 27, 2016 stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, JS, per unit ground area, EC and per unit leaf area, EL, using sapwood (AS) and leaf (AL) area calculated from stand- and species-specific allometry. -
Engelmann Spruce, One of the Light- Est of All the Important Commercial Woods in the United States, Is Soft, Machines Well, and Has Low Shrinkage and Uniform Color
Forest Service Engelmann An American Wood United States Department of Agriculture Spruce FS-264 Engelmann spruce, one of the light- est of all the important commercial woods in the United States, is soft, machines well, and has low shrinkage and uniform color. The wood closely resembles that of the eastern spruces in appearance and properties and, like them, has excellent pulping properties. It is used principally in home construc- tion for framing, sheathing, interior paneling, and exterior trim; for ply- wood manufacture, food containers, and specialty items; and for pulp and paper. F-320890 An American Wood Engelmann Spruce (Picea engelmannii Parry ex. Engelm.) Donald C. Markstrom and Robert R. Alexander1 Distribution Engelmann spruce, a major compo- nent of the high-elevation Rocky Mountain forests, is widely distributed in the western United States and two Provinces in Canada. It grows in the Rocky Mountains of southwestern Al- berta south through the high mountains of eastern Washington and Oregon, Idaho, western Montana, to western and central Wyoming, and in the high mountains of southern Wyoming, Colo- rado, Utah, eastern Nevada, New Mex- ico, and northern Arizona (fig. 1). In the Pacific Northwest, Engelmann spruce grows along the east slope of the Coast Range from west-central British Columbia, south along the crest and east slope of the Cascade Range through Washington and Oregon to northern California. It is a minor com- ponent of these high-elevation forests. Engelmann spruce is found most typ- ically in association with subalpine fir (Abies lasiocarpa) and with it forms the Engelmann spruce-subalpine fir forest type. -
Master Species List for Temple Ambler Field Station
Temple Ambler Field Station master species' list Figure 1. Animal groups identified to date through our citizen science initiatives at Temple Ambler Field Station. Values represent unique taxa identified in the field to the lowest taxonomic level possible. These data were collected by field citizen scientists during events on campus or were recorded in public databases (iNaturalist and eBird). Want to become a Citizen Science Owlet too? Check out our Citizen Science webpage. Any questions, issues or concerns regarding these data, please contact us at [email protected] (fieldstation[at}temple[dot]edu) Temple Ambler Field Station master species' list Figure 2. Plant diversity identified to date in the natural environments and designed gardens of the Temple Ambler Field Station and Ambler Arboretum. These values represent unique taxa identified to the lowest taxonomic level possible. Highlighted are 14 of the 116 flowering plant families present that include 524 taxonomic groups. A full list can be found in our species database. Cultivated specimens in our Greenhouse were not included here. Any questions, issues or concerns regarding these data, please contact us at [email protected] (fieldstation[at}temple[dot]edu) Temple Ambler Field Station master species' list database_title Temple Ambler Field Station master species' list last_update 22October2020 description This database includes all species identified to their lowest taxonomic level possible in the natural environments and designed gardens on the Temple Ambler campus. These are occurrence records and each taxa is only entered once. This is an occurrence record, not an abundance record. IDs were performed by senior scientists and specialists, as well as citizen scientists visiting campus. -
Ecology, Silviculture, and Management of the Engelmann Spruce - Subalpine Fir Type in the Central and Southern Rocky Mountains
Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 1987 Ecology, Silviculture, and Management of the Engelmann Spruce - Subalpine Fir Type in the Central and Southern Rocky Mountains Robert R. Alexander Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Alexander, R. (1987). Ecology, silviculture, and management of the Engelmann spruce - subalpine fir type in the central and southern Rocky Mountains. USDA Forest Service, Agriculture Handbook No. 659, 144 pp. This Full Issue is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. United States Department of Agriculture Ecology, Silviculture, and Forest Management of the Engelmann Service Agriculture Spruce-Subalpine Fir Type in the Handbook No. 659 Central and Southern Rocky Mountains Robert R. Alexander Chief silviculturist Rocky Mountain Forest and Range Experiment Station Ft. Collins, CO March 1987 Alexander, Robert R. Ecology, silviculture, and management of the Engelmann spruce-subalpine fir type in the central and southern Rocky Mountains. Agric. Handb. No. 659. Washington, DC: U.S. Department of Agriculture Forest Service; 1987. 144 p. Summarizes and consolidates ecological and silvicultural knowledge of spruce-fir forests.