Sub-Segmentasi Sesar Pada Segmen Kumering Antara Danau Ranau Hingga Lembah Suoh, Lampung Barat

Total Page:16

File Type:pdf, Size:1020Kb

Sub-Segmentasi Sesar Pada Segmen Kumering Antara Danau Ranau Hingga Lembah Suoh, Lampung Barat JURNAL LINGKUNGAN DAN BENCANA GEOLOGI Journal of Environment and Geological Hazards JLBG ISSN: 2086-7794, e-ISSN: 2502-8804 Akreditasi LIPI No. 692/AU/P2MI-LIPI/07/2015 e-mail: [email protected] - http://jlbg.geologi.esdm.go.id/index.php/jlbg Sub-Segmentasi Sesar Pada Segmen Kumering Antara Danau Ranau Hingga Lembah Suoh, Lampung Barat Subdivision Of Segmentation In Kumering Segment Between Ranau Lake To Suoh Valley, West Lampung Sonny Aribowo1,2, Dicky Muslim1, Winantris1, Danny H. Natawidjaja3, Mudrik R. Daryono3 1Universitas Padjadjaran, Bandung 2Loka Uji Teknik Penambangan dan Mitigasi Bencana, Liwa, LIPI 3Pusat Penelitian Geoteknologi LIPI, Bandung Naskah diterima 08 November 2017, selesai direvisi 2017, dan disetujui 2017 e-mail: [email protected] ABSTRAK Sesar Sumatra merupakan sesar mendatar yang tersusun atas beberapa segmen. Evolusi sesar memainkan peranan penting terhadap retakan permukaan akibat gempabumi dan juga pencabangan sesar. Segmen Kumering merupakan sesar yang menjadi sumber gempabumi yang bersifat merusak pada tahun 1933 dan 1994. Kami melakukan delineasi pada Segmen Kumering berdasarkan interpretasi pada citra SRTM dengan resolusi 30 m untuk memberikan pandangan yang paling mutakhir mengenai sesar yang menjadi sumber gempa tersebut. Kami juga melakukan tinjauan untuk dimensi dari sub-segmen dalam hubungannya dengan offset sesar maksimum. Dari hasil interpretasi citra teridentifikasi 12 sub-segmen yang dibatasi oleh adanya step dan/atau tekukan serta hilangnya jejak morfologi pada kenampakan citra. Kompleksitas sesar mendatar tergambarkan dalam hubungan antara jumlah step dan atau tekukan dengan panjang maksimum offset sesar. Tren linear menunjukkan bahwa jarak offset maksimum yang semakin panjang pada segmen sesar yang lebih panjang dan memiliki jumlah step dan/atau tekukan yang semakin sedikit. Hasil penelitian memberikan gambaran yang lebih baik secara resolusi. Hasil ini juga membuktikan adanya pencabangan sesar yang berasosiasi dengan sesar utama pada lingkungan vulkanik. Kata kunci: sesar mendatar, segmen sesar, offset sesar, SRTM30, Kumering, Sesar Sumatra ABSTRACT Sumatran fault is well known as highly segmented strike-slip fault. The evolution of fault segmentation plays crucial role to the dimension of earthquake ruptures as well as fault splays. Kumering Segment of the Sumatran Fault Zone allegedly as the source of Liwa’s 1933 and 1994 earthquakes. To update the prediction of geometrical attribute of strike-slip system in the Sumatran Fault Zone,we delineate sub-segmentation in the Kumering Segment based on SRTM30 imagery. We studied the dimension of each subsegments and correlate them to the maximum fault offset. From imageries interpretation, we identify twelve subdivision of Kumering Segment bounded by step and the subdued of geomorphic trace. We show strike-slip complexity by relationship between number of steps with maximum fault offset length. Linear trend shows that our data fit with previous study, which concluded that faults have longer segments and fewer steps when their offsets increase. This article also intended to obtain better understanding in characterizing source of earthquake triggered by right lateral Sumatran Fault. Our results provide better resolution for fault segmentation. The results may also reveal the orientation of secondary fault formed by splaying associated with first order fault in the volcanic environment. Keywords: strike-slip fault, fault segment, fault offset, SRTM30, Kumering, Sumatran Fault. 31 Jurnal Lingkungan dan Bencana Geologi, Vol. 8 No. 1, April 2017: 31 - 45 PENDAHULUAN Sumatra merupakan salah satu sumber dari beberapa Sesar mendatar memiliki arsitektur yang kompleks gempabumi yang merusak di Pulau Sumatra dengan sejumlah segmen yang memiliki panjang (Supartoyo dan Surono, 2008). Identifikasi dari bervariasi yang terpisahkan oleh adanya sesar tekukan yang terjadi pada sistem sesar mendatar yang paralel (steps) (de Joussineau dan Aydin, juga sangat penting dalam memperkirakan 2009). Segmentasi sesar dan evolusi segmen sesar kejadian gempabumi pada masa mendatang. memiliki hubungan yang relevan dengan dinamika Segmen sesar memiliki peranan secara langsung dan ukuran dari besaran offset akibat pergeseran terhadap dinamika dan ukuran dari retakan yang pada jalur sesar (de Joussineau dan Aydin, 2009). terjadi pada saat gempabumi (Barka dan Kadinsky- Dalam sebuah sistem sesar mendatar yang menjadi Cade, 1988; Shaw dan Dieterich, 2007; Wesnousky, sumber gempabumi, sesar bukanlah merupakan 2006). Gempabumi yang bersifat merusak telah sebuah struktur planar yang sederhana, tetapi terjadi di daerah Liwa, Kabupaten Lampung terdapat juga tekukan (bends), daerah yang Barat, Provinsi Lampung pada tahun 1933 dan tertekan (jogs), percabangan (branches) dan step 1994 (Widiwijayanti drr., 1996; Soehaimi drr., (Shaw, 2006). Daerah tekukan pada sistem sesar 2002) Gempabumi yang terjadi bersumber dari mendatar terdapat elemen seperti tekukan terlepas pergerakan Segmen Kumering yang merupakan (releasing bends) dan tekukan tertahan (restraining salah satu segmen dari 19 segmen Sesar Sumatra bends), tekukan sesar terlepas dan tekukan sesar (Gambar 2) yang memiliki karakteristik sesar tertahan adalah lokasi dimana terjadi deformasi mendatar (strike-slip) menganan atau dekstral transtensional dan transpresional (Gambar 1) (Sieh dan Natawidjaja, 2000). Sesar Sumatra, (Cunningham dan Mann, 2007). Umumnya fitur- dalam hal ini merupakan sesar mendatar yang fitur struktur yang terbentuk dalam konfigurasi terjadi karena pengaruh subduksi miring (oblique) sesar mendatar pada skala regional dapat terekam dimana tegangan antar lempeng dipartisi ke dalam pada ekspresi geomorfik pada skala yang lebih sistem strike-slip yang paralel di dalam zona kecil (Burbank dan Anderson, 2012). depan busur maupun busur belakang (Sieh dan Penelitian mengenai struktur geologi di daerah Natawidjaja, 2000). tektonik aktif penting dilakukan karena sesar Nomenklatur Segmen Kumering merujuk Gambar 1. Konfigurasi sesar mendatar dan struktur yang terbentuk di dalamnya (dimodifikasi dari Christie-Blick dan Biddle, 1986; Ye drr, 2015) 32 Sub-Segmentasi Sesar Pada Segmen Kumering Antara Danau Ranau Hingga Lembah Suoh, Lampung Barat kepada Sieh dan Natawidjaja (2000). Pemilihan Tatanan Geologi nomenklatur tersebut merupakan nomenklatur yang Daerah penelitian merupakan bagian dari Lajur paling update dan berdasarkan pada hasil analisis Barisan yang terletak sejajar dengan Pulau Sumatra yang cukup valid. Nomenklatur ini menggantikan (Gafoer drr., 1994). Daerah penelitian terletak di beberapa nomenklatur seperti segmen Semangko bagian selatan Lajur Barisan dengan Danau Ranau (Katili dan Hehuwat, 1967), Sesar Sukabumi berperan sebagai daerah depresi yang terbentuk (Koswara dan Santoso, 1995; Suwijanto drr., karena mekanisme transtensional Sesar Sumatra. 1996) dan segmen Ranau – Suoh (Bellier dan Daerah penelitian termasuk ke dalam Peta Geologi Sébrier, 1994; Pramumijoyo drr., 1994, Soehaimi Lembar Kotaagung (Amin drr., 1994) dan Peta drr., 2013). Segmen Ranau – Suoh terdiri dari 7 Geologi Lembar Baturaja (Gafoer drr., 1994) sub-segmen (Soehaimi drr., 2013; Soehaimi drr., (Gambar 2). 2014). Daerah penelitian tersusun oleh 3 kelompok batuan Maksud dari penelitian ini adalah mendapatkan yaitu Batuan Vulkanik Kuarter, Batuan Piroklastik pola struktur geologi detail pada daerah yang aktif Kuarter – Tersier dan Batuan Vulkanik Tersier secara tektonik. Sedangkan tujuan dari penelitian (Gafoer drr., 1994; Amin drr., 1994, Natawidjaja ini adalah mengetahui sub-segmentasi sesar dan Kesumadharma, 1993; Pramumijoyo drr., aktif pada Segmen Kumering. Selain itu juga 1994; Suwijanto drr., 1996). Secara rinci masing- menggambarkan kompleksitas sesar mendatar masing kelompok batuan ini dibagi lagi ke dalam yang dilihat dari hubungan antara jumlah step beberapa satuan batuan (Koswara dan Santoso, dan atau tekukan dengan panjang maksimum 1995) antara lain : offset sesar. Sub-segmentasi (subdivision of Batuan gunungapi Kuarter (Qhv dan Qv) yang segmentation) terbagi berdasarkan kepada seksi tersusun atas batuan gunungapi Seminung yang sesar (fault section). Seksi sesar (fault section) berupa lava andesit basaltis dan breksi lahar dengan adalah bagian dari segmentasi yang terbagi sisipan tuf pasiran; batuan gunungapi Kukusan dikarenakan perubahan arah strike dan/atau berupa lava andesit, batuan gunungapi Pesagi perubahan kinematik gerak sesar (Daryono, 2016). Gambar 2. A. Tatanan tektonik Pulau Sumatra dan segmentasi Sesar Sumatra. B Segmentasi Sesar Sumatra di bagian selatan. Segmentasi Sesar Sumatra berdasarkan Sieh dan Natawidjaja (2000). Lingkaran merah pada gambar sebelah kiri dan garis merah pada gambar sebelah kanan menunjukkan lokasi dari Segmen Kumering. 33 Jurnal Lingkungan dan Bencana Geologi, Vol. 8 No. 1, April 2017: 31 - 45 berupa lava andesit dan breksi lahar dan batuan berumur Kuarter dan Tersier di daerah penelitian gunungapi Sekincau berupa breksi lahar. Batuan tersebut terpotong oleh Sesar Sumatra. Sesar gunungapi ini berumur Plistosen – Holosen. Sumatra merupakan sesar transform dipengaruhi oleh subduksi miring (oblique) dimana tegangan Batuan piroklastik yang tersusun atas Tuf Ranau antar lempeng dipartisi ke dalam sistem strike-slip (QTr) (van Bemmelen, 1949; Marks, 1956; Bellier yang paralel di dalam zona depan busur maupun drr., 1999; Gasparon, 2005) atau Tuf Liwa berumur busur belakang (Sieh dan Natawidjaja, 2000) dan Plio-Plistosen. Tuf Ranau yang diambil dari daerah berhubungan dengan pemekaran
Recommended publications
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Weak Tectono-Magmatic Relationships Along an Obliquely
    Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia Valerio Acocella, Olivier Bellier, Laura Sandri, Michel Sébrier, Subagyo Pramumijoyo To cite this version: Valerio Acocella, Olivier Bellier, Laura Sandri, Michel Sébrier, Subagyo Pramumijoyo. Weak Tectono- Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia. Fron- tiers in Earth Science, Frontiers Media, 2018, 6, pp.3. 10.3389/feart.2018.00003. hal-01780318 HAL Id: hal-01780318 https://hal.archives-ouvertes.fr/hal-01780318 Submitted on 27 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 09 February 2018 doi: 10.3389/feart.2018.00003 Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia Valerio Acocella 1*, Olivier Bellier 2, Laura Sandri 3, Michel Sébrier 4 and Subagyo Pramumijoyo 5 1 Dipartimento di Scienze, Università Roma Tre, Rome, Italy, 2 Aix Marseille
    [Show full text]
  • Appendix 3 Selection of Candidate Cities for Demonstration Project
    Building Disaster and Climate Resilient Cities in ASEAN Final Report APPENDIX 3 SELECTION OF CANDIDATE CITIES FOR DEMONSTRATION PROJECT Table A3-1 Long List Cities (No.1-No.62: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-1 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-2 Long List Cities (No.63-No.124: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-2 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-3 Long List Cities (No.125-No.186: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-3 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-4 Long List Cities (No.187-No.248: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-4 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-5 Long List Cities (No.249-No.310: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-5 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-6 Long List Cities (No.311-No.372: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP.
    [Show full text]
  • Fractal Dimension Analysis and Earthquake Repeated Period Estimation in Sumatera Fault Zone (Bengkulu-Lampung-Sunda Segment)
    FRACTAL DIMENSION ANALYSIS AND EARTHQUAKE REPEATED PERIOD ESTIMATION IN SUMATERA FAULT ZONE (BENGKULU-LAMPUNG-SUNDA SEGMENT) Syamsurijal Rasimeng1,2,5, Masdar Helmi3, Tugiyono4, Suharno1,5 1Department of Geophysics Engineering, Faculty of Engineering, University of Lampung, Indonesia 2Doctoral Programme of Environmental Sciences, University of Lampung, Indonesia 3Department of Civil Engineering, Faculty of Engineering, University of Lampung, Indonesia 4Post Graduate Program of Environmental Sciences, University of Lampung, Indonesia 5Disaster and Mitigation Center, Faculty of Engineering, University of Lampung, Indonesia e-mail: [email protected] ABSTRACT An earthquake seismicity parameter study has been conducted in the southern part of the Sumatra Fault Zone (SFZ) for the period 1919 to 2019 with a hypocenter depth of 120 km and magnitude ≥ Mw 4. The research area is divided into three segments, Bengkulu segment, Lampung segment and Sunda segment, respectively. This study aims to evaluate the seismicity parameters in the form of a-value, b-value, fractal dimension and probabilities of earthquake recurrence period. Frequency-magnitude correlation statistical approach introduced by Gutenberg-Richter is used to calculate of seismicity parameters based on catalogue data obtained from USGS. An a-value variation of 4.4358 to 5.6263 is obtained, which indicates the most dominant seismic intensity. b-value of 0.6576 to 0.7978 correlate with high-stress levels, the level of spatial heterogeneity on the SFZ and the probabilities of bigger earthquakes in the future. The calculation of fractal dimension of 1.3 to 1.6 indicates an earthquake distribution pattern caused by a single fracture zone along the SFZ. The fracture zone is located on the left and right of the SFZ, which may not have been connected.
    [Show full text]
  • Conference Series
    IOP Publishing Journal Title Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX The site effect analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City N Haerudin1, Rustadi1, F Alami1, S. Rasimeng, and I B S Yogi1 1 Universitas Lampung, Jl. S. Brojonegoro No. 1, Bandar Lampung, 35145, Indonesia Abstract. Bandar Lampung is the capital of Lampung Province which is crossed by faults, one of the faults that crosses Bandar Lampung namely the Panjang Fault or commonly called the Tarahan Fault, it is making the Bandar Lampung to be a potential earthquake area. Over the past 20 years many large earthquakes have rocked Indonesia, especially in the western part of Indonesia, such as Aceh, Nias, Padang, Bengkulu, Tasikmalaya, and Ciamis. Lampung Province is located near the subduction boundary of the Indo-Australian Plate against the Eurasian Plate, and also there is another fault, the Semangko Fault. Therefore, Lampung Province and especially Bandar Lampung have greater potential to the earthquake effect. The potential of this earthquake needs to be carried out by disaster mitigation activities to minimize the consequences that occur due to earthquakes, namely by classifying soil vulnerability by characterizing site effects. This study aims to determine the site effect based on dominant frequency parameters. The study used 135 microtremor measurement points by using the Ref- Tek 130-SMHR strong motion accelerograph type (3 components). Microtremor data was analyzed using the Horizontal to Vertical Spectral Ratio (HVSR) method in Geopsy software. Based on the HVSR method, the Bandar Lampung is dominated by soft soil types with a dominant frequency of f0 <1.33 Hz.
    [Show full text]
  • 2004 Indian Ocean Earthquake and Tsunami
    Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Search Wikipedia 2004 Indian Ocean earthquake and tsunami From Wikipedia, the free encyclopedia Coordinates: 3.316°N 95.854°E Main page The 2004 Indian Ocean earthquake occurred at 2004 Indian Ocean earthquake Contents 00:58:53 UTC on 26 December with the epicentre off Featured content the west coast of Sumatra, Indonesia. The shock had Current events a moment magnitude of 9.1–9.3 and a maximum Random article Mercalli intensity of IX (Violent). The undersea Donate to Wikipedia megathrust earthquake was caused when the Indian Wikipedia store Plate was subducted by the Burma Plate and Interaction triggered a series of devastating tsunamis along the Help coasts of most landmasses bordering the Indian About Wikipedia Ocean, killing 230,000–280,000 people in 14 Community portal countries, and inundating coastal communities with Aceh in Indonesia, the most devastated region Recent changes waves up to 30 metres (100 ft) high. It was one of the struck by the tsunami Contact page deadliest natural disasters in recorded history. Date 26 December 2004[1] Tools Indonesia was the hardest-hit country, followed by Sri Origin 00:58:53 UTC time 07:58:53 WIB What links here Lanka, India, and Thailand. Related changes Magnitude 9.1–9.3 M [2] It is the third-largest earthquake ever recorded on a w Upload file Depth 30 km (19 mi)[1] seismograph and had the longest duration of faulting Special pages Epicenter 3.316°N 95.854°E[1] open in browser PRO version Are you a developer? Try out the HTML to PDF API pdfcrowd.com Special pages [1] [9] Epicenter 3.316°N 95.854°E Permanent link ever observed, between 8.3 and 10 minutes.
    [Show full text]
  • Data Collection Survey on Disaster Risk Reduction
    THE REPUBLIC OF INDONESIA NATIONAL DISASTER MANAGEMENT AUTHORITY DATA COLLECTION SURVEY ON DISASTER RISK REDUCTION FINAL REPORT SUMMARY AUGUST 2019 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) YACHIYO ENGINEERING CO., LTD ORIENTAL CONSULTANTS GLOBAL CO., LTD GE JR 19-041 Data Collection Survey on Disaster Risk Reduction in the Republic of Indonesia YACHIYO ENGINEERING CO.,LTD./ORIENTAL CONSULTANTS GLOBAL CO.,LTD. JV DATA COLLECTION SURVEY ON DISASTER RISK REDUCTION SUMMARY Table of Contentes Table of Contents List of Figures and Tables Abbreviation Background, Purpose and Outline of the Survey ............................................................................. 1 Background of the Survey ......................................................................................................................... 1 Purpose of the Survey ............................................................................................................................... 1 Survey Overview ....................................................................................................................................... 1 Natural Disaster and Damage in Indonesia ...................................................................................... 4 Main Natural Disasters and Damage ........................................................................................................ 4 Economic Loss of Natural Disaster .......................................................................................................... 5 Present Situation
    [Show full text]
  • Paleoseismicity and Seismic Hazard Along the Great Sumatran Fault (Indonesia)
    J. Geodyaamics Vol. 24, Nos l-4, pp. 169-183,1997 8 1997 Eisevier Science Ud All rights reserved. Printed in Great Britain PIk so264-37@7(%poo51-8 0264-3707/97 $17.00+0.00 PALEOSEISMICITY AND SEISMIC HAZARD ALONG THE GREAT SUMATRAN FAULT (INDONESIA) 0. Bellier,’ M. !%brier,’ S. Pramumijoyo? Th. Beaudouin,’ H. Harjono,3 I. Bahar4 and 0. Fom? ‘URA-CNRS-GCophysique et Geodynamique Inteme, B&t.509, Universid Paris-Sud, 91405 Orsay Cedex, France *Universitas Gadjah Mada, Teknik Geologi FrI, Yogyakarta,Indonesia ‘LIP1 Geoteknology (Indonesian Institute of Sciences), Bandung, Indonesia ‘DGGMR/PPPG (Geological Research and Development Centre), Bandung, Indonesia ‘lnstitut Astrophysique Spatial, Universite Paris-Sud, 91405 Orsay Cedex, France (Received 6 November 199s: accepted in revised form I7 October 1996) Abstract-The Great Sumatran Fault (GSF) is a 1650~km-long dextral strike-slip fault zone which accommodates part of the oblique convergence of the subduction between the Indo- Australian and Eurasian plates. To define the seismic hazard along this fault, we used paleoseismology and neotectonics. To characterise the seismic history of the southern GSF we excavated four trenches. Within these trenches, the occurrence of only one paleosol related to a seismic event indicates that in a wet, tropical region, the degradation rate of organic matter could be faster than seismic recurrence. The trenching method permitted us to identify only one recent earthquake, reactivating the southern GSF. As the trenching method does not seem efficient to constrain knowledge of seismicity in this region, we have developed an active tectonic study to characterise the seismic hazard along the GSF.
    [Show full text]
  • Implications for the Ranau Caldera Emplacement and Slip-Partitioning in Sumatra (Indonesia)
    ELSEVIER Tectonophysics 312 (1999) 347±359 www.elsevier.com/locate/tecto K±Ar age of the Ranau Tuffs: implications for the Ranau caldera emplacement and slip-partitioning in Sumatra (Indonesia) Olivier Bellier a,Ł,Herve Bellon b, Michel SeÂbrier a,Sutantob,c,ReneÂC.Mauryb a UMR CNRS 8616, `ORSAYTERRE', BaÃtiment 509, Universite Paris-Sud, 91405 Orsay Cedex, France b UMR CNRS 6538, `Domaines OceÂaniques', Universite de Bretagne Occidentale, 6 Avenue Le Gorgeu, B.P. 809, 29285 Brest, France c Jurusan Gologi, UPN Veteran, Jl. Lingkan Utara, 55281 Yogyarta, Indonesia Received 2 December 1998; accepted 7 June 1999 Abstract The Sumatran subduction is an example of oblique convergence which is partitioned into a component normal to the plate boundary and a wrench component taken up by strike-slip deformation within the overriding plate. Indeed, off Sumatra, the approximately NNE-trending convergence is mechanically accommodated both by subduction processes and strike-slip deformation partly localised on the Great Sumatran dextral Fault (GSF). The GSF parallels the trench and follows approximately the magmatic arc, where major calderas are installed. The Ranau caldera is one of those located along the GSF in south Sumatra. A Ranau Tuff sample yielded 40K±40Ar ages of 0:55 š 0:15 Ma for its separated feldspars, which places the major Ranau caldera collapse between 0.7 and 0.4 Ma, a period of paroxysmal calderic activity along the Sumatran Arc. Geomorphic features affecting the Ranau Tuff and offset by the GSF yield a long-term dextral slip rate of 5:5 š 1:9mm=yr at 5ëS.
    [Show full text]
  • Western Lampung Probabilistic Tsunami Hazard Model: Investigations by Aerial Photogrammetry and Remote Sensing Data
    The 40th Asian Conference on Remote Sensing (ACRS 2019) October 14-18, 2019 / Daejeon Convention Center(DCC), Daejeon, Korea MoE2-4 WESTERN LAMPUNG PROBABILISTIC TSUNAMI HAZARD MODEL: INVESTIGATIONS BY AERIAL PHOTOGRAMMETRY AND REMOTE SENSING DATA Arliandy P. Arbad(1), W. Takeuchi(2), S. Jonathan(3), M. Jamilah (4) Achmad Ardy(5), Chusna Meimuna (6) 1 State Polytechnic of Jakarta., Jl. Prof. Dr. G.A Siwabessy, Kampus Baru UI Depok, Indonesia 2Institute of Industrial Science, The University of Tokyo, Japan 3Dept. of Geomatics Engineering, Institute Technology of Sumatera, Lampung, Indoesia 4 Dept. of Geodesy Engineering, Diponegoro University, Semarang, Indonesia 5 Dept. of Agroecotechnology, Lampung University, Lampung, Indonesia 6Public Health Department, The University of Indonesia, Depok, Indonesia ore University, 02841 Email: [email protected] KEY WORDS: Lampung, Tsunami, Hazard, Photogrammetry, Remote Sensing ABSTRACT: The series of deadly tsunamis in recent years in Indonesia, such as the extreme events in Aceh-Sumatera Island (2004), Lombok Island (2018), Palu-Sulawesi Island (2018), and most recently in Lampung-Sumatera Island (2018) is a natural disaster destructive power. While earthquakes allow at best several seconds of warning, the time available for issuing a tsunami warning ranges from minutes to many hours. Sumatra Island is one of the areas located in areas prone to the natural disaster, such as earthquake, landslide and tsunami. Sumatra is flanked by two main epicenter Great Sumatran Fault throughout of the Bukit Barisan and two subduction zones both the Indo-Australian Plate and the Eurasian Plate. The aim of this research is how to create a probabilistic model of Tsunami in Western Lampung.
    [Show full text]