Paleoseismicity and Seismic Hazard Along the Great Sumatran Fault (Indonesia)

Total Page:16

File Type:pdf, Size:1020Kb

Paleoseismicity and Seismic Hazard Along the Great Sumatran Fault (Indonesia) J. Geodyaamics Vol. 24, Nos l-4, pp. 169-183,1997 8 1997 Eisevier Science Ud All rights reserved. Printed in Great Britain PIk so264-37@7(%poo51-8 0264-3707/97 $17.00+0.00 PALEOSEISMICITY AND SEISMIC HAZARD ALONG THE GREAT SUMATRAN FAULT (INDONESIA) 0. Bellier,’ M. !%brier,’ S. Pramumijoyo? Th. Beaudouin,’ H. Harjono,3 I. Bahar4 and 0. Fom? ‘URA-CNRS-GCophysique et Geodynamique Inteme, B&t.509, Universid Paris-Sud, 91405 Orsay Cedex, France *Universitas Gadjah Mada, Teknik Geologi FrI, Yogyakarta,Indonesia ‘LIP1 Geoteknology (Indonesian Institute of Sciences), Bandung, Indonesia ‘DGGMR/PPPG (Geological Research and Development Centre), Bandung, Indonesia ‘lnstitut Astrophysique Spatial, Universite Paris-Sud, 91405 Orsay Cedex, France (Received 6 November 199s: accepted in revised form I7 October 1996) Abstract-The Great Sumatran Fault (GSF) is a 1650~km-long dextral strike-slip fault zone which accommodates part of the oblique convergence of the subduction between the Indo- Australian and Eurasian plates. To define the seismic hazard along this fault, we used paleoseismology and neotectonics. To characterise the seismic history of the southern GSF we excavated four trenches. Within these trenches, the occurrence of only one paleosol related to a seismic event indicates that in a wet, tropical region, the degradation rate of organic matter could be faster than seismic recurrence. The trenching method permitted us to identify only one recent earthquake, reactivating the southern GSF. As the trenching method does not seem efficient to constrain knowledge of seismicity in this region, we have developed an active tectonic study to characterise the seismic hazard along the GSF. We created a large-scale segmentation map which allows 18 major fault segments with lengths ranging between 45 and 200 km to be recognised. We complemented the segmentation map reporting major earthquake ruptures on the basis of the historical seismicity which recorded 17 earthquakes since 1835. The segmentation map indicates a northward increase of segment lengths which parallels the GSF slip-rate increase. This observation suggests a northward increase of seismic hazard along the GSF. Segmentation and historical seismicity provide evidence of a 300~km-long seismic gap (between 3”N and 5’N) around a locked restraining bend which can be considered as having high potential for seismic hazard in Sumatra. The magnitude of the maximum expected earthquake for each segment was estimated through two empirical methods. These estimates give higher maximum magnitude and shorter seismic recurrence intervals for segments in northern Sumatra, confirming a northward increase of seismic hazard. 0 1997 Elsevier Science Ltd INTRODUCTION The 1650~km-long Great Sumatran Fault (GSF) is a NW-trending right-lateral fault that parallels the western Sunda Trench and follows the magmatic arc southward from the Andaman Sea back- arc basin to the Sunda Strait (Fig. 1). Off Sumatra, the convergence direction is oblique to the 169 170 0. Bellier er al. plate boundary. Assuming that strike-slip motion along the GSF could accommodate the trench- parallel component of the oblique convergence, the maximum slip-rate of the GSF estimated by global modelling should be in the range 40-60mm/yr (Jarrard, 1986; McCaffrey, 1992). Consequently, the GSF is one of the fastest strike-slip faults in the world. However, the GSF segmentation characteristics and seismic hazard parameters are very poorly constrained. Because only 17 seismic events (M>6 or MMI>VIII) during the last two centuries have been lE SUNDA STRAIT Fig. 1. Regional geodynamic framework of Sumatra showing slip-rates along the major faults of Sumatra (after Bellier and SCbrier, 1995). ‘GSF’ represents the Great Sumatran Fault and ‘MF’ the Mentawai’ Fault. Paleoseismicity along the Great SumatranFault 171 reported (e.g. Beaudouin er al., 1995) and there is no evidence for significant fault creep (e.g., Duquesnoy er al., 1996) along the GSF, the fault seems to be characterised by a stick-slip behaviour, appearing to remain locked between earthquakes. In order to evaluate whether the GSF has a high seismic potential we conducted trench observations across the southernmost GSF segment to constrain its surface source parameters such as fault geometry, slip per event, and recurrence interval between major events. To improve the GSF seismic hazard assessment, we compiled a large-scale segmentation map based on topographic characteristics. We complemented this map showing the earthquake ruptures of the last century on the basis of a historical seismicity study, and we calculated the moment magnitudes for the maximum earthquake expected on each segment. TECTONIC SETTING: CONVERGENCE OBLIQUITY VERSUS SUMATRAN DEFORMATION In subduction areas associated with oblique convergence, relative plate motion may be partitioned between displacements along the subduction plane and deformation within the overriding plate (Fitch, 1972). Some of this overriding plate deformation corresponds to a shear component localized on a margin-parallel, strike-slip fault zone. The roughly NNE-trending convergence (DeMets et al., 1990; McCaffrey, 1992; Tregoning et al., 1994) at the Sunda trench is oblique off Sumatra. It has to be accommodated by both subduction and strike-slip deformation in the overriding plate; that is, mostly along the GSF (Bellier and Sebrier, 1995). To estimate slip-rate, an along-strike survey of the GSF was conducted using geomorphic feature offsets observed on SPOT images and topographic maps (Bellier and Stbrier, 1995). These estimates show a southward slip-rate decrease along the GSF from about 23+2 mm/yr at 2”N, to 6*4 mm/yr at S’S, near Ranau lake (Fig. 1 and Table 1). SPOT image analysis and structural field studies suggest that the GSF slip-rate variation is chiefly accommodated by transpressional deformation in the back-arc (Bellier and Sebrier, 1995; Detourbet, 1995). Several dextral-reverse oblique-slip fault zones splay southeastward from the GSF to reach the Sumatran back-arc basins. The horizontal slip-rate of these faults appears to be about 1 mm/yr. The fore-arc is to the west, bounded by another fault parallel to the GSF major fault zone: the Mentawai’ Fault (MF on Fig. 1). Most of the fore-arc sliver, between the GSF and the MF, should be under compression as indicated by the MF geometry which suggests dextral movement (Diament et al., 1992) with the western block upthrust (Karig et al., 1980). This idea is supported by field observations that showed a roughly N40°E-trending shortening (Detourbet, 1995) similar to the compression in the back-arc (Mount and Suppe, 1992). These relationships suggest that even if the active deformation of Sumatra is mostly localized along the GSF, a combination of different modes of deformation throughout the fore-arc platelet to the back-arc domain contribute to accommodate the oblique convergence. SUMATRADEFORMATION AND SEISMIC HAZARD Bellier and SCbrier (1995) show a northward increase of the dextral slip-rate along the GSF. Assuming that seismic hazard is roughly proportional to slip-rate, the difference in slip-rate suggests that seismic hazard had to be higher along the northern rather than the southern GSF; that is, for a similar sized earthquake the recurrence interval should be shorter in the north than in the south. In addition, the slip-rate study suggested that deformation throughout the fore-arc platelet to the back-arc domain contribute to accommodate the convergence (Bellier and Sebrier, 1995). This implies that although most of the convergence is accommodated along the GSF, 172 0. Bellier er al. active deformation and thus seismic hazard is distributed within a 500-km-broad zone from the fore-arc to the back-arc. PALEOSEIMOLOGY OF THE SEMANGKA SEGMENT: TRENCH OBSERVATIONS Paleoseismology and seismic hazard studies are very difficult to perform with significant results under adverse wet tropical conditions. By way of experiment, we excavated a set of four trenches along the Semangka segment of the south GSF, where the strike-slip movement changes to oblique-normal faulting (Fig. 2). The trenches were located at the foot of the 800-m- high east-facing escarpment that limits the Semangka Valley to the West. All these trenches were excavated at the foot of faceted spurs (Fig. 3), not affected by landslides, and away from major alluvial fans. In order to minimise water-table problems, excavation was carried out at the end of the dry season. The trenches were 20-39 m-long, and up to 4.6-m-deep (Fig. 4). North Way Kerap trench (trench Tl) The N55’E-trending trench Tl was dug at the foot of a 35-m-high faceted spur where the fault trace is markedly linear. The mean angle of the scarp slope is steep (about 30”) and is interrupted by two slope breaks inclined at 35”. Tl walls exposed a Present-day black organic-rich soil Table 1. GSF segments, moment magnitudes and recurrence intervals for maximum expected earthquakes along the GSF. Numbers of the segments Sl to S18 refer to numbers shown on Fig. 5a. Location gives approximately the segment extremities. Moment magnitudes calculated by seismic moment (e.g. Kanamori, 1983) and statistical (Wells and Coppersmith, 1994) methods. Seismic recurrence intervals for the expected maximum magnitude are provided where slip-rates are available (Bellier and Stbrier, 1995) Statistical Seismic moment method method N” Location Length D=l m D=4 m Slip rate Recurrrence (km) MO MO (mmhd (yr) lOI Nm) ( lOI Nm) M, Mw M, Sl Semangka bay/Suwoh graben 70 4.2 7.0
Recommended publications
  • Along the Sumatran Fault System Derived from GNSS
    Ito et al. Earth, Planets and Space (2016) 68:57 DOI 10.1186/s40623-016-0427-z LETTER Open Access Co‑seismic offsets due to two earthquakes (Mw 6.1) along the Sumatran fault system derived from GNSS measurements Takeo Ito1* , Endra Gunawan2, Fumiaki Kimata3, Takao Tabei4, Irwan Meilano2, Agustan5, Yusaku Ohta6, Nazli Ismail7, Irwandi Nurdin7 and Didik Sugiyanto7 Abstract Since the 2004 Sumatra–Andaman earthquake (Mw 9.2), the northwestern part of the Sumatran island has been a high seismicity region. To evaluate the seismic hazard along the Great Sumatran fault (GSF), we installed the Aceh GNSS network for the Sumatran fault system (AGNeSS) in March 2005. The AGNeSS observed co-seismic offsets due to the April 11, 2012 Indian Ocean earthquake (Mw 8.6), which is the largest intraplate earthquake recorded in history. The largest offset at the AGNeSS site was approximately 14.9 cm. Two Mw 6.1 earthquakes occurred within AGNeSS in 2013, one on January 21 and the other on July 2. We estimated the fault parameters of the two events using a Markov chain Monte Carlo method. The estimated fault parameter of the first event was a right-lateral strike-slip where the strike was oriented in approximately the same direction as the surface trace of the GSF. The estimated peak value of the probability density function for the static stress drop was approximately 0.7 MPa. On the other hand, the co-seis- mic displacement fields of the second event from nearby GNSS sites clearly showed a left-lateral motion on a north- east–southwest trending fault plane and supported the contention that the July 2 event broke at the conjugate fault of the GSF.
    [Show full text]
  • Buidling Response to Long-Distance Major Earthquakes
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 804 BUILDING RESPONSE TO LONG-DISTANCE MAJOR EARTHQUAKES T.-C. PAN1, X. T. YOU2 and K. W. CHENG3 SUMMARY Singapore is believed to be located in an aseismic region. However, tremors caused by distant Sumatra earthquakes have reportedly been felt in Singapore for many years. Based on previous studies for Singapore, the maximum credible earthquakes (MCEs) from Sumatra have been hypothesized to be a subduction earthquake (Mw = 9.0) and a strike-slip earthquake (Mw = 7.5). Response at a soft soil site in Singapore to the synthetic bedrock motions corresponding to these maximum credible earthquakes are simulated using a one-dimensional wave propagation method based on the equivalent-linear technique. A typical high-rise residential building in Singapore is analyzed to study its responses subjected to the MCE ground motions at both the rock site and the soft soil site. The results show that the base shear force ratios would exceed the local code requirement on the notional horizontal load for buildings. Because of the large aspect ratio of the floor plan of the typical building, the effects of flexible diaphragms are also included in the seismic response analyses. INTRODUCTION The 1985 Michoacan earthquake, in which a large earthquake (Ms = 8.1) along the coast of Mexico, caused destructions and loss of lives in Mexico City, 350 km away from the epicenter. Learning from the Michoacan earthquake, it has been recognized that urban areas located rather distantly from earthquake sources may not be completely safe from the far-field effects of earth tremors.
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Asian Green Mussels Perna Viridis (Linnaeus, 1758) Detected in Eastern Indonesia
    BioInvasions Records (2015) Volume 4, Issue 1: 23–29 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.1.04 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication A ferry line facilitates dispersal: Asian green mussels Perna viridis (Linnaeus, 1758) detected in eastern Indonesia Mareike Huhn1,2*, Neviaty P. Zamani1 and Mark Lenz2 1Marine Centre, Department of Marine Science and Technology, Bogor Agricultural University, Jalan Lingkar Akademi, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany E-mail: [email protected] (MH), [email protected] (NZ), [email protected] (ML) *Corresponding author Received: 6 June 2014 / Accepted: 30 October 2014 / Published online: 8 December 2014 Handling editor: Demetrio Boltovskoy Abstract While part of a single country, the Indonesian archipelago covers several biogeographic regions, and the high levels of national shipping likely facilitate transfer of non-native organisms between the different regions. Two vessels of a domestic shipping line appear to have served as a transport vector for the Asian green mussel Perna viridis (Linnaeus, 1758) between regions. This species is indigenous in the western but not in the eastern part of the archipelago, separated historically by the Sunda Shelf. The green mussels collected from the hulls of the ferries when in eastern Indonesia showed a significantly lower body condition index than similar-sized individuals from three different western-Indonesian mussel populations. This was presumably due to reduced food supply during the ships’ voyages. Although this transport- induced food shortage may initially limit the invasive potential (through reduced reproductive rates) of the translocated individuals, the risk that the species will extend its distributional range further into eastern Indonesia is high.
    [Show full text]
  • Coastal Phytoplankton Pigments Composition in Three Tropical Estuaries of Indonesia
    Journal of Marine Science and Engineering Article Coastal Phytoplankton Pigments Composition in Three Tropical Estuaries of Indonesia Ario Damar 1,2,*, Franciscus Colijn 3, Karl-Juergen Hesse 4 and Fery Kurniawan 1,2 1 Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University (Bogor Agricultural University), Jl. Agatis Darmaga Bogor, Bogor 16680, Indonesia; [email protected] 2 Center for Coastal and Marine Resources Studies, IPB University (Bogor Agricultural University), Kampus IPB Baranangsiang, Jl. Raya Pajajaran No. 1, Bogor 16127, Indonesia 3 Institute for Coastal Research, Centre for Material and Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; [email protected] 4 Forschungs-und Technologiezentrum, Westküste, Hafentörn, 25761 Büsum, Germany; [email protected] * Correspondence: [email protected]; Tel.: +62-813-1065-6861 Received: 20 March 2020; Accepted: 28 April 2020; Published: 29 April 2020 Abstract: In this study, the composition and distribution of phytoplankton pigments and its relation to nutrients and light was investigated, and an elaboration of using it as a proxy for phytoplankton group composition followed, in different nutrient-level tropical bays of Indonesia. Phytoplankton pigment analysis by using High Performance Liquid Chromatographer (HPLC) resulted in a set of pigments of chlorophyll-a (Chl-a), chlorophyll-b (Chl-b), chlorophyll-c (Chl-c), lutein, zeaxanthin, fucoxanthin, peridinin, diadinoxanthin, and ß-carotene. Linear multi regression and multivariate principal component analysis (PCA) showed that algae pigments correlate positively with nutrients and are not significantly correlated with underwater light and water transparency, suggesting important roles of nutrients for phytoplankton development in tropical estuaries.
    [Show full text]
  • Seasonal Variability of Sea Surface Chlorophyll-A and Abundance of Pelagic fish in Lampung Bay, Southern Coastal Area of Sumatra, Indonesia
    Coastal Marine Science 34(1): 82–90, 2010 Special Section “Oceanography” Seasonal variability of sea surface chlorophyll-a and abundance of pelagic fish in Lampung Bay, Southern Coastal Area of Sumatra, Indonesia 1 2 1 1 Suhendar I SACHOEMAR *, Tetsuo YANAGI , Nani HENDIARTI , Muhamad SADLY 1 and Fanny MELIANI 1 Agency for the Assessment and Application of Technology (BPPT) JL. M.H. Thamrin No. 8, Jakarta 10340, Indonesia 2 Research Institute for Applied Mechanics (RIAM), Kyushu University Kasuga-koen, Kasuga-shi 1–6, Fukuoka, Japan * E-mail: [email protected] Received 6 November 2009; Accepted 4 January 2010 Abstract — An observation of sea surface chlorophyll-a in relation to the abundance of pelagic fish was conducted in Lampung Bay, Southern Coastal Area of Sumatra using MODIS satellite data of 2003–2004. The observation result shows the variability of sea surface chlorophyll-a in Lampung Bay seems to be correlated with the monsoonal system that influences on the variability of the meteorological and oceanographic situation. In the wet season (northwest monsoon), the concentration of chlorophyll-a is high. It was suspected due to high precipitation during this season in which the coastal area was enriched by the nutrient load from the upper land area through the rivers and coastal discharge. While in the dry season (southeast monsoon), high concen- tration of the chlorophyll-a is stimulated by increasing nutrient concentration due to the upwelling. During these seasons, the abundance of the pelagic fish was high within this region. Key words: Seasonal variability, chlorophyll-a, pelagic fish, Lampung Bay sure over Asia and low air pressure over Australia are ob- Introduction served, allowing wet air transport (northwesterly wind) from the South China Sea to the Pacific Ocean across the Indone- Lampung Bay is a semi enclosed water ecosystem estu- sian archipelago.
    [Show full text]
  • Segmentation of Sumatran Fault Zone in Tanggamus District, Lampung
    Segmentation of Sumatran Fault Zone in Tanggamus District, Lampung based on GPS Displacement and SRTM Data Satrio Muhammad Alifa, M Ilvan Ardiansyaha, Syafei Wiyonoa aGeomatics Engineering Department, Institut Teknologi Sumatera, Lampung Selatan, Lampung *Corresponding E-mail: [email protected] Abstract: Sumatran Fault is one of hazard located in Sumatra Island. Southern segment of Sumatran fault is one of sources of earthquakes in Lampung Province. Hazard map is used as consideration in developing region. The source of hazard comes from stress accumulation of crust which can be derived from movement of points in surface. The study of determining fault location which is source of hazard is important for sustainable development in Lampung Province. The source of hazard is southern segment of Sumatran fault which stretched on Tanggamus, Lampung in south end of Sumatra Island. Tanggamus District has capital in Kota Agung, one of cities with oldest civilization in Lampung Province so that its natural landscape had sedimentated. It causes the delineation of Sumatran Fault Zone by using Digital Terrain Model conducted on previous research had the flaw. This study uses GPS Displacement Data as tool to determine the location of fault beside Shuttle Radar Topography Mission (SRTM) Data and seismic activity. SRTM Data which is conditional equivalent with Digital Terrain Model has 30 meter resolution and measured in 2018. Seismic activity used in this research is obtained from USGS from last 100 years. Seismic activity used as support data to determine whether the fault delineated with SRTM and GPS displacement is active. GPS displacement is calculated from GPS coordinates measured periodically from 2006 to 2019.
    [Show full text]
  • India and Sunda Plates Motion and Deformation Along Their Boundary In
    India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS Anne Socquet, Christophe Vigny, Nicolas Chamot-Rooke, Wim Simons, Claude Rangin, Boudewijn Ambrosius To cite this version: Anne Socquet, Christophe Vigny, Nicolas Chamot-Rooke, Wim Simons, Claude Rangin, et al.. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. Jour- nal of Geophysical Research : Solid Earth, American Geophysical Union, 2006, 111 (B5), pp.B05406. 10.1029/2005JB003877. hal-01793657 HAL Id: hal-01793657 https://hal-ens.archives-ouvertes.fr/hal-01793657 Submitted on 16 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, B05406, doi:10.1029/2005JB003877, 2006 India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS Anne Socquet,1,2 Christophe Vigny,1 Nicolas Chamot-Rooke,1 Wim Simons,3 Claude Rangin,4 and Boudewijn Ambrosius3 Received 8 June 2005; revised 12 January 2006; accepted 15 February 2006; published 6 May 2006. [1] Using a regional GPS data set including 190 stations in Asia, from Nepal to eastern Indonesia and spanning 11 years, we update the present-day relative motion between the Indian and Sundaland plates and discuss the deformation taking place between them in Myanmar.
    [Show full text]
  • Weak Tectono-Magmatic Relationships Along an Obliquely
    Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia Valerio Acocella, Olivier Bellier, Laura Sandri, Michel Sébrier, Subagyo Pramumijoyo To cite this version: Valerio Acocella, Olivier Bellier, Laura Sandri, Michel Sébrier, Subagyo Pramumijoyo. Weak Tectono- Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia. Fron- tiers in Earth Science, Frontiers Media, 2018, 6, pp.3. 10.3389/feart.2018.00003. hal-01780318 HAL Id: hal-01780318 https://hal.archives-ouvertes.fr/hal-01780318 Submitted on 27 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 09 February 2018 doi: 10.3389/feart.2018.00003 Weak Tectono-Magmatic Relationships along an Obliquely Convergent Plate Boundary: Sumatra, Indonesia Valerio Acocella 1*, Olivier Bellier 2, Laura Sandri 3, Michel Sébrier 4 and Subagyo Pramumijoyo 5 1 Dipartimento di Scienze, Università Roma Tre, Rome, Italy, 2 Aix Marseille
    [Show full text]
  • The Tectonic Framework of the Sumatran Subduction Zone
    ANRV374-EA37-15 ARI 23 March 2009 12:21 The Tectonic Framework of the Sumatran Subduction Zone Robert McCaffrey Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180; email: [email protected] Annu. Rev. Earth Planet. Sci. 2009. 37:345–66 Key Words by University of California - San Diego on 06/16/09. For personal use only. First published online as a Review in Advance on Sumatra, subduction, earthquake, hazards, geodesy December 4, 2008 The Annual Review of Earth and Planetary Sciences is Abstract Annu. Rev. Earth Planet. Sci. 2009.37:345-366. Downloaded from arjournals.annualreviews.org online at earth.annualreviews.org The great Aceh-Andaman earthquake of December 26, 2004 and its tragic This article’s doi: consequences brought the Sumatran region and its active tectonics into the 10.1146/annurev.earth.031208.100212 world’s focus. The plate tectonic setting of Sumatra has been as it is today Copyright c 2009 by Annual Reviews. for tens of millions of years, and catastrophic geologic events have likely All rights reserved been plentiful. The immaturity of our understanding of great earthquakes 0084-6597/09/0530-0345$20.00 and other types of geologic hazards contributed to the surprise regarding the location of the 2004 earthquake. The timing, however, is probably best understood simply in terms of the inevitability of the infrequent events that shape the course of geologic progress. Our best hope is to improve under- standing of the processes involved and decrease our vulnerability to them. 345 ANRV374-EA37-15 ARI 23 March 2009 12:21 INTRODUCTION The island of Sumatra (Figure 1) forms the western end of the Indonesian archipelago and until recently was perhaps best known to the world for its coffee, though perhaps not so much as Java, its neighbor to the east.
    [Show full text]
  • Tectonic Features of the Southern Sumatra-Western Java Forearc of Indonesia
    TECTONICS, VOL. 21, NO. 5, 1047, doi:10.1029/2001TC901048, 2002 Tectonic features of the southern Sumatra-western Java forearc of Indonesia H. U. Schlu¨ter, C. Gaedicke, H. A. Roeser, B. Schreckenberger, H. Meyer, and C. Reichert Bundesanstalt fu¨r Geowissenschaften und Rohstoffe (BGR), Hannover, Germany Y. Djajadihardja Agency for the Assessment and Application of Technology (BPPT), Jakarta, Indonesia A. Prexl Veritas DGC Ltd., Crawley, UK Received 23 November 2001; revised 19 April 2002; accepted 28 May 2002; published 12 October 2002. [1] Multichannel reflection seismic profiles along the Earth: Plate boundary—general (3040); 8158 Tectonophysics: active Sunda Arc, where the Indo-Australian plate Evolution of the Earth: Plate motions—present and recent (3040); subducts under the overriding Eurasian margin 9320 Information Related to Geographic Region: Asia; KEYWORDS: revealed two accretionary wedges: The inner wedge I Indonesia, Sunda forearc, subduction, sediments, seismics, geo- is of assumed Paleogene age, and the outer wedge II is dynamics. Citation: Schlu¨ter H. U., C. Gaedicke, H. A. Roeser, of Neogene to Recent age. The inner wedge I is B. Schreckenberger, H. Meyer, C. Reichert, Y. Djajadihardja, and composed of tectonic flakes stretching from southeast A. Prexl, Tectonic features of the southern Sumatra-western Java forearc of Indonesia, Tectonics, 21(5), 1047, doi:10.1029/ Sumatra across the Sunda Strait to northwest Java, 2001TC901048, 2002. implying a similar plate tectonic regime in these areas at the time of flake development
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 19 February 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Pacey, A. and Macpherson, C.G. and McCarey, K.J.W. (2013) 'Linear volcanic segments in the central Sunda Arc, Indonesia, identied using Hough Transform analysis : implications for arc lithosphere control upon volcano distribution.', Earth and planetary science letters., 369-370 . pp. 24-33. Further information on publisher's website: http://dx.doi.org/10.1016/j.epsl.2013.02.040 Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Earth and planetary science letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Earth and planetary science letters, 367-370, 2013, 10.1016/j.epsl.2013.02.040 Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
    [Show full text]