Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia Accepted Manuscript Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh Province, Indonesia Ratiranjan Jena, Biswajeet Pradhan, Ghassan Beydoun, Nizamuddin, Ardiansyah, Hizir Sofyan, Muzailin Affan PII: S1674-9871(19)30132-X DOI: https://doi.org/10.1016/j.gsf.2019.07.006 Reference: GSF 870 To appear in: Geoscience Frontiers Received Date: 3 April 2019 Revised Date: 21 May 2019 Accepted Date: 11 July 2019 Please cite this article as: Jena, R., Pradhan, B., Beydoun, G., Nizamuddin, Ardiansyah, Sofyan, H., Affan, M., Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh Province, Indonesia, Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.07.006. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Integrated model for earthquake risk assessment using neural 2 network and analytic hierarchy process: Aceh Province, 3 Indonesia 4 5 Ratiranjan Jenaa, Biswajeet Pradhana,b,*, Ghassan Beydouna, Nizamuddinc, Ardiansyahc, 6 Hizir Sofyand, Muzailin Affanc 7 a Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, 8 Systems and Modelling, University of Technology Sydney, NSW 2007, Australia 9 b Department of Energy and Mineral Resources Engineering, Choongmu-gwan, Sejong University, 209 10 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea 11 c Department of Informatics, Syiah Kuala University, Banda Aceh, Indonesia 12 d Department of Statistics, Syiah Kuala University, Banda Aceh, Indonesia 13 14 * Correspondence: [email protected] or [email protected] 15 16 Abstract: Catastrophic natural hazards, such as earthquake, pose serious threats to 17 properties and human lives in urban areas. Therefore, earthquake risk assessment (ERA) is 18 indispensable in disaster management. ERA is an integration of the extent of probability and 19 vulnerability of assets. This study develops an integrated model by using the artificial neural 20 network–analytic hierarchy process (ANN–AHP) model for constructing the ERA map. 21 The aim of the study is to quantify urban populationMANUSCRIPT risk that may be caused by impending 22 earthquakes. The model is applied to the city of Banda Aceh in Indonesia, a seismically 23 active zone of Aceh province frequently affected by devastating earthquakes. ANN is used 24 for probability mapping, whereas AHP is used to assess urban vulnerability after the hazard 25 map is created with the aid of earthquake intensity variation thematic layering. The risk map 26 is subsequently created by combining the probability, hazard, and vulnerability maps. Then, 27 the risk levels of various zones are obtained. The validation process reveals that the 28 proposed model can map the earthquake probability based on historical events with an 29 accuracy of 84%.ACCEPTED Furthermore, results show that the central and southeastern regions of the 30 city have moderate to very high risk classifications, whereas the other parts of the city fall 31 under low to very low earthquake risk classifications. The findings of this research are 32 useful for government agencies and decision makers, particularly in estimating risk 33 dimensions in urban areas andA forCCEPTED the future MANUSCRIPTstudies to project the preparedness strategies 34 for Banda Aceh. 35 Keywords: Earthquake; Hazard; Vulnerability; Risk; GIS; ANN–AHP 36 37 1. Introduction 38 The destructive power of earthquakes is very strong, has a wide-range effect, and endangers 39 the safety of human lives and properties (Xu and Dai, 2010). Indonesia is one of the highly 40 seismically active countries in the world with severe damage rates (Sørensen and Atakan, 41 2008). The country has experienced a number of destructive earthquakes in the last two 42 decades. Indonesia consists of several thousands of small islands situated along the 43 continental oceanic plate boundary of the Eurasian plate and Indo–Australian plate in the 44 central part of the Alpine–Himalayan seismic belt (Granger et al., 1999; Petersen et al., 45 2001). Trends on plate tectonics reveal the MANUSCRIPTIndian plate to be part of the large 46 Indo–Australian plate underlying Bengal Bay and Indian Ocean. The plate motion is towards 47 the northeastern direction with an average speed of six centimeters annually (Sørensen and 48 Atakan, 2008). The plate subducts beneath the Burma plate as a microplate of the large 49 Eurasian plate at the region of Sunda trench (Sørensen and Atakan, 2008). This subduction 50 process creates thrust faults and volcanic activities, the two major reasons of earthquakes in 51 Indonesia (Bellier et al., 1997). 52 Indonesia has experienced a large number of earthquakes based on historical records and 53 information fromACCEPTED the earthquake database of the United States Geological Survey (USGS). 54 The meeting of the tectonic plates produces a reverse fault system governed by regional 55 geology and active volcanos. According to worldwide earthquake databases, 150 or more 56 earthquakes were experienced from 1900 to 2017. Total fatalities exceeded 266,270 in the 57 last 400 years in different regionsACCEPTED of Indonesia. MANUSCRIPT Some high deformation rates have triggered 58 many large earthquake events (≥ 8.0), such as the 1861 Nias event, 2004 event in the Indian 59 Ocean, and the Simeulue event in 2005 (ISMNPD, 2004). The Sumatra–Andaman 60 megathrust earthquake in 2004 is the second largest magnitude earthquake recorded to date 61 (Bilham and Ambrasey, 2005). The earthquake created a rupture of 1300 km (length) 62 characterized by seven separate segments from the northwest to the Andaman Islands at more 63 than 1600 km (Bilham and Ambrasey, 2005). The earthquake duration is the longest event 64 period recorded at approximately 600 s. Youngs et al. (1997) and Lin and Lee (2008) 65 explained that the intertectonic subduction of the plate was associated with the event and 66 bedrock movement. In Indonesia, the recorded human toll in Aceh province and North 67 Sumatra due to the 2004 earthquake was approximately 110,229 deaths, 12,123 missing, and 68 703,518 displaced (Siemon et al., 2005). The details of fatalities and injuries are presented in 69 Table 1. Infrastructure damage due to the dominant disastrous earthquakes may be due to the 70 use of poor construction materials. Damage to buildings was caused by the earthquake 71 magnitudes (i.e., ≥ 8.0) that used to frequently occurMANUSCRIPT in Aceh province, thus continuously 72 affecting the city of Banda Aceh (ISMNPD, 2004; Irwansyah, 2010). The total damage 73 estimated for the buildings accounted for 35% of total buildings (ISMNPD, 2004; Siemon et 74 al., 2005). 75 Banda Aceh is the capital city of Aceh province that is exposed potentially to a significant 76 earthquake vulnerability and risk along the major fault of Great Sumatran Fault (GSF). GSF 77 is a right-lateral strike-slip fault that has not experienced any large earthquake in the northern 78 part of the fault ACCEPTEDparticularly in Banda Aceh from the last 200 years (Irwansyah, 2010). This 79 tranquil part of the fault is considerably recognized as a seismic gap in Aceh province 80 (Irwansyah, 2010). An accumulation of increased stress along the GSF may be observed due 81 to the collision between plates. Petersen et al. (2001) mentioned the capability of GSF for 82 producing up to M=7.9 event, as the history explained the capability of M=7.7 that has 83 occurred along this fault. ThisACCEPTED earthquake occurredMANUSCRIPT in 1892 near the city of Sibolga 84 (approximately ±570 km at the southeast of Banda Aceh) (Petersen et al., 2001; Siemon et 85 al., 2005). Furthermore, Banda Aceh is situated on thick sedimentary alluvium deposits 86 (Siemon et al., 2005). However, the site amplification probability is extremely high in the 87 thick alluvium (Brebbia et al., 1996; Setiawan, 2017; Setiawan et al., 2018). Therefore, 88 estimate the seismic site amplification of Banda Aceh is required by recognizing the 89 probability of future earthquakes because the city is surrounded by several earthquake events 90 (Lin and Lee, 2008). The city has experienced ground shaking due to some major 91 earthquakes in the recent years. Moreover, understanding Banda Aceh’s vulnerability and 92 risk due to earthquakes is essential and significant for urban planning (Zhang and Jia, 2010). 93 The probability, hazard, and social vulnerability analysis can be applied in future risk 94 mapping and decision management by considering the risk reduction, prevention, and 95 mitigation (Davidson and Freudenburg, 1996; Davidson, 1997; Davidson and Shah, 1997; 96 Turner et al., 2003; Wisner et al., 2003; Adger et al, 2004; Rygel et al., 2006; Birkmann, 97 2007; Setiawan et al., 2018). In the current analysis,MANUSCRIPT the hazards and vulnerability resulting in 98 high ability and stand on socially operated attributes and contexts, for a large population, are 99 unsheltered. Research scholars and scientists have divergent definitions for the notion of 100 vulnerability and
Recommended publications
  • Tsunami in Palu
    TSUNAMI AWARENESS IN INDONESIA Khaerunnisa Ph.D [email protected] Brigitta Michelle S.T. Contents 01 02 03 Tsunami in Tsunami Tsunami Indonesia at a awareness Awareness in glance 1990- projects the Society 2020 • Structural • Questionnaire • Non Structural Survey TSUNAMI IN INDONESIA AT A GLANCE Picture source: theatlantic.com Indonesia is located at the confluence of three active earth plates, namely the Indo Australia plate, the Eurasian plate and the Pacific plate. This plate activity is the most frequent cause of tsunamis in Indonesia Tsunami Events in Indonesia 1990-2020 (based on death toll) Year 1990199119921993199419951996199719981999200020012002201120122013201920202003200420052006200720162008200920102014201520172018 5 166,08 0 413 1 800 11 18 9 110 5 8 25 2,03 0 4 7 238 431 2,50 20 0 0 16 (Triyono et al, 2019) Tsunami Events in Indonesia 1990-2020 (based on Richter Scale) Year 1990199119921993199419951996199719981999200020012002201120122013201920202003200420052006200720162008200920102014201520172018 8.2 9 7. 6. 8.7 8 2 6. 7.7 7.9 9 8.2 8.4 7.4 7.6 6. 7.6 7 3 7.8 . 7.8 7.7 4 7.5 (Triyono et al, 2019) Number of Tsunami Events 1990-2020 2000-2009 (8) 2010-2019 (4) • 2000: May 4 (Banggai) • 2010: October 25 (Mentawai) • 2002: October 10 (Papua) • 2012: April 11 ((Aceh) • 2004: October 11 (Alor), December 24 (Aceh) • 2018: September 28 (Donggala), • 2005: March 28 (Padang) December 22 (Banten) • 2006: March 14 (Seram), July 17 (Pangandaran) • 2007: September 12 (Bengkulu) 2004 2012 1995 2005 2000 2002 2010 2018 2006 1996 1995
    [Show full text]
  • Along the Sumatran Fault System Derived from GNSS
    Ito et al. Earth, Planets and Space (2016) 68:57 DOI 10.1186/s40623-016-0427-z LETTER Open Access Co‑seismic offsets due to two earthquakes (Mw 6.1) along the Sumatran fault system derived from GNSS measurements Takeo Ito1* , Endra Gunawan2, Fumiaki Kimata3, Takao Tabei4, Irwan Meilano2, Agustan5, Yusaku Ohta6, Nazli Ismail7, Irwandi Nurdin7 and Didik Sugiyanto7 Abstract Since the 2004 Sumatra–Andaman earthquake (Mw 9.2), the northwestern part of the Sumatran island has been a high seismicity region. To evaluate the seismic hazard along the Great Sumatran fault (GSF), we installed the Aceh GNSS network for the Sumatran fault system (AGNeSS) in March 2005. The AGNeSS observed co-seismic offsets due to the April 11, 2012 Indian Ocean earthquake (Mw 8.6), which is the largest intraplate earthquake recorded in history. The largest offset at the AGNeSS site was approximately 14.9 cm. Two Mw 6.1 earthquakes occurred within AGNeSS in 2013, one on January 21 and the other on July 2. We estimated the fault parameters of the two events using a Markov chain Monte Carlo method. The estimated fault parameter of the first event was a right-lateral strike-slip where the strike was oriented in approximately the same direction as the surface trace of the GSF. The estimated peak value of the probability density function for the static stress drop was approximately 0.7 MPa. On the other hand, the co-seis- mic displacement fields of the second event from nearby GNSS sites clearly showed a left-lateral motion on a north- east–southwest trending fault plane and supported the contention that the July 2 event broke at the conjugate fault of the GSF.
    [Show full text]
  • The 2018 Mw 7.5 Palu Earthquake: a Supershear Rupture Event Constrained by Insar and Broadband Regional Seismograms
    remote sensing Article The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms Jin Fang 1, Caijun Xu 1,2,3,* , Yangmao Wen 1,2,3 , Shuai Wang 1, Guangyu Xu 1, Yingwen Zhao 1 and Lei Yi 4,5 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] (J.F.); [email protected] (Y.W.); [email protected] (S.W.); [email protected] (G.X.); [email protected] (Y.Z.) 2 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China 3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China 4 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; [email protected] 5 Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-27-6877-8805 Received: 4 April 2019; Accepted: 29 May 2019; Published: 3 June 2019 Abstract: The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85◦.
    [Show full text]
  • Buidling Response to Long-Distance Major Earthquakes
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 804 BUILDING RESPONSE TO LONG-DISTANCE MAJOR EARTHQUAKES T.-C. PAN1, X. T. YOU2 and K. W. CHENG3 SUMMARY Singapore is believed to be located in an aseismic region. However, tremors caused by distant Sumatra earthquakes have reportedly been felt in Singapore for many years. Based on previous studies for Singapore, the maximum credible earthquakes (MCEs) from Sumatra have been hypothesized to be a subduction earthquake (Mw = 9.0) and a strike-slip earthquake (Mw = 7.5). Response at a soft soil site in Singapore to the synthetic bedrock motions corresponding to these maximum credible earthquakes are simulated using a one-dimensional wave propagation method based on the equivalent-linear technique. A typical high-rise residential building in Singapore is analyzed to study its responses subjected to the MCE ground motions at both the rock site and the soft soil site. The results show that the base shear force ratios would exceed the local code requirement on the notional horizontal load for buildings. Because of the large aspect ratio of the floor plan of the typical building, the effects of flexible diaphragms are also included in the seismic response analyses. INTRODUCTION The 1985 Michoacan earthquake, in which a large earthquake (Ms = 8.1) along the coast of Mexico, caused destructions and loss of lives in Mexico City, 350 km away from the epicenter. Learning from the Michoacan earthquake, it has been recognized that urban areas located rather distantly from earthquake sources may not be completely safe from the far-field effects of earth tremors.
    [Show full text]
  • Tsunamigenic Earthquakes
    Fifteen Years of (Major to Great) Tsunamigenic Earthquakes F Romano, S Lorito, and A Piatanesi, Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy T Lay, Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, CA, United States © 2020 Elsevier Inc. All rights reserved. Tsunamis, Seismically Induced 1 Fifteen Years of Major to Great Tsunamigenic Earthquakes 3 The Study of Tsunamigenic Earthquakes 3 Megathrust Tsunamigenic Earthquakes 4 The Sunda 2004–10 Sequence in the Indian Ocean 4 Peru 2007 5 Maule 2010 5 Tohoku 2011 5 Santa Cruz 2013 6 Iquique 2014 6 Illapel 2015 6 Tsunamigenic Doublets 7 Kurils 2006–07 7 Samoa 2009 7 Tsunami Earthquakes 7 Java 2006 8 Mentawai 2010 8 Recent Special Cases 8 Sumatra 2012 8 Solomon 2007 8 Haida Gwaii 2012 9 Kaikoura 2016 9 Mexico 2017 9 Palu 2018 9 Conclusions 10 References 10 Further Reading 12 Tsunamis, Seismically Induced Tsunamis are a series of long gravity waves generated by the displacement of a significant volume of water that propagating in the sea, under the action of the gravity force, returns in its original equilibrium position. Differently from the common wind waves, tsunamis are characterized by large wavelengths (ranging from tens to hundreds of km) and long periods (ranging from minutes to hours). Several natural phenomena such as earthquakes, landslides, volcanic eruptions, the rapid change of atmospheric pressure (meteotsunami), or asteroids impacts can be the source of a tsunami; among these, the most frequent is represented by the earthquakes. Most of the very tsunamigenic earthquakes occur nearby the Earth convergent boundaries (Fig.
    [Show full text]
  • Waves of Destruction in the East Indies: the Wichmann Catalogue of Earthquakes and Tsunami in the Indonesian Region from 1538 to 1877
    Downloaded from http://sp.lyellcollection.org/ by guest on May 24, 2016 Waves of destruction in the East Indies: the Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877 RON HARRIS1* & JONATHAN MAJOR1,2 1Department of Geological Sciences, Brigham Young University, Provo, UT 84602–4606, USA 2Present address: Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78758, USA *Corresponding author (e-mail: [email protected]) Abstract: The two volumes of Arthur Wichmann’s Die Erdbeben Des Indischen Archipels [The Earthquakes of the Indian Archipelago] (1918 and 1922) document 61 regional earthquakes and 36 tsunamis between 1538 and 1877 in the Indonesian region. The largest and best documented are the events of 1770 and 1859 in the Molucca Sea region, of 1629, 1774 and 1852 in the Banda Sea region, the 1820 event in Makassar, the 1857 event in Dili, Timor, the 1815 event in Bali and Lom- bok, the events of 1699, 1771, 1780, 1815, 1848 and 1852 in Java, and the events of 1797, 1818, 1833 and 1861 in Sumatra. Most of these events caused damage over a broad region, and are asso- ciated with years of temporal and spatial clustering of earthquakes. The earthquakes left many cit- ies in ‘rubble heaps’. Some events spawned tsunamis with run-up heights .15 m that swept many coastal villages away. 2004 marked the recurrence of some of these events in western Indonesia. However, there has not been a major shallow earthquake (M ≥ 8) in Java and eastern Indonesia for the past 160 years.
    [Show full text]
  • Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophysical Settings Analysed and Visualized by GMT Polina Lemenkova
    Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophysical Settings Analysed and Visualized by GMT Polina Lemenkova To cite this version: Polina Lemenkova. Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophys- ical Settings Analysed and Visualized by GMT. Glasnik Srpskog Geografskog Drustva, 2021, 100 (2), pp.1-23. 10.2298/GSGD2002001L. hal-03093633 HAL Id: hal-03093633 https://hal.archives-ouvertes.fr/hal-03093633 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ГЛАСНИК Српског географског друштва 100(2) 1 – 23 BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY 2020 ------------------------------------------------------------------------------ --------------------------------------- Original scientific paper UDC 551.4(267) https://doi.org/10.2298/GSGD2002001L Received: October 07, 2020 Corrected: November 27, 2020 Accepted: December 09, 2020 Polina Lemenkova1* * Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Moscow, Russian Federation JAVA AND SUMATRA SEGMENTS OF THE SUNDA TRENCH: GEOMORPHOLOGY AND GEOPHYSICAL SETTINGS ANALYSED AND VISUALIZED BY GMT Abstract: The paper discusses the geomorphology of the Sunda Trench, an oceanic trench located in the eastern Indian Ocean along the Sumatra and Java Islands of the Indonesian archipelago.
    [Show full text]
  • Using a Genetic Algorithm to Estimate the Details of Earthquake Slip Distributions from Point Surface Displacements
    Edinburgh Research Explorer Using a genetic algorithm to estimate the details of earthquake slip distributions from point surface displacements Citation for published version: Lindsay, A, McCloskey, J & Bhloscaidh, MN 2016, 'Using a genetic algorithm to estimate the details of earthquake slip distributions from point surface displacements', Journal of Geophysical Research. Solid Earth, vol. 121, no. 3, pp. 1796-1820. https://doi.org/10.1002/2015JB012181 Digital Object Identifier (DOI): 10.1002/2015JB012181 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Geophysical Research. Solid Earth General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Using a genetic algorithm to estimate the details 10.1002/2015JB012181 of earthquake slip distributions
    [Show full text]
  • History of Disasters in Indonesia
    Emergency and Disaster Reports ISSN 2340-9932 Vol 3, Num 2, 2016 Monographic issue An approach to the profile of disaster risk of Indonesia Leroy de Priester University of Oviedo – Department of Medicine Unit for Research in Emergency and Disaster Emergency and Disaster Reports 2016; 3 (2): 5-66 Letter from the editors The Emergency and Disaster Reports is a journal edited by the Unit for Research in Emergency and Disaster of the Department of Medicine of the University of Oviedo aimed to introduce research papers, monographic reviews and technical reports related to the fields of Medicine and Public Health in the contexts of emergency and disaster. Both situations are events that can deeply affect the health, the economy, the environment and the development of the affected populations. The topics covered by the journal include a wide range of issues related to the different dimensions of the phenomena of emergency and disaster, ranging from the study of the risk factors, patterns of frequency and distribution, characteristics, impacts, prevention, preparedness, mitigation, response, humanitarian aid, standards of intervention, operative research, recovery, rehabilitation, resilience and policies, strategies and actions to address these phenomena from a risk reduction approach. In the last thirty years has been substantial progress in the above mentioned areas in part thanks to a better scientific knowledge of the subject. The aim of the journal is to contribute to this progress facilitating the dissemination of the results of research in this field. This second number of 2016 of the Emergency and Disaster Reports covers the situation in Indonesia. The archipelagic country of the Republic of Indonesia is one of the world most natural disaster-prone countries in the world.
    [Show full text]
  • Regional Seismic Hazard Posed by the Mentawai Segment of the Sumatran Megathrust by Kusnowidjaja Megawati and Tso-Chien Pan
    Bulletin of the Seismological Society of America, Vol. 99, No. 2A, pp. 566–584, April 2009, doi: 10.1785/0120080109 Regional Seismic Hazard Posed by the Mentawai Segment of the Sumatran Megathrust by Kusnowidjaja Megawati and Tso-Chien Pan Abstract Several lines of evidence have indicated that the Mentawai segment of the Sumatran megathrust is very likely to rupture within the next few decades. The present study is to investigate seismic hazard and risk levels at major cities in Sumatra, Java, Singapore, and the Malay Peninsula caused by the potential giant earthquakes. Three scenarios are considered. The first one is an Mw 8.6 earthquake rupturing the 280 km segment that has been locked since 1797; in the second scenario, rupture oc- curs along a 600 km segment covering the combined rupture areas of the 1797 and 1833 historical events, producing an Mw 9.0 earthquake; and the third scenario has the same rupture area as the second scenario but with doubled slip amplitude, resulting in an Mw 9.2 earthquake. Simulation results indicate that ground motions produced by the hypothetical scenarios are strong enough to cause yielding to medium- and high- rise buildings in many major cities in Sumatra. It is vital to ensure that the overall strength, stiffness, and integrity of the structures are maintained throughout the entire duration of shaking. However, the ductile detailing in current practice is formulated based on an assumption that ground motions would last from 20 to 40 sec. This has not been tested for longer durations of 3–5 min, expected from giant earthquakes.
    [Show full text]
  • Segmentation of Sumatran Fault Zone in Tanggamus District, Lampung
    Segmentation of Sumatran Fault Zone in Tanggamus District, Lampung based on GPS Displacement and SRTM Data Satrio Muhammad Alifa, M Ilvan Ardiansyaha, Syafei Wiyonoa aGeomatics Engineering Department, Institut Teknologi Sumatera, Lampung Selatan, Lampung *Corresponding E-mail: [email protected] Abstract: Sumatran Fault is one of hazard located in Sumatra Island. Southern segment of Sumatran fault is one of sources of earthquakes in Lampung Province. Hazard map is used as consideration in developing region. The source of hazard comes from stress accumulation of crust which can be derived from movement of points in surface. The study of determining fault location which is source of hazard is important for sustainable development in Lampung Province. The source of hazard is southern segment of Sumatran fault which stretched on Tanggamus, Lampung in south end of Sumatra Island. Tanggamus District has capital in Kota Agung, one of cities with oldest civilization in Lampung Province so that its natural landscape had sedimentated. It causes the delineation of Sumatran Fault Zone by using Digital Terrain Model conducted on previous research had the flaw. This study uses GPS Displacement Data as tool to determine the location of fault beside Shuttle Radar Topography Mission (SRTM) Data and seismic activity. SRTM Data which is conditional equivalent with Digital Terrain Model has 30 meter resolution and measured in 2018. Seismic activity used in this research is obtained from USGS from last 100 years. Seismic activity used as support data to determine whether the fault delineated with SRTM and GPS displacement is active. GPS displacement is calculated from GPS coordinates measured periodically from 2006 to 2019.
    [Show full text]
  • The Subduction Initiation Stage of the Wilson Cycle
    Downloaded from http://sp.lyellcollection.org/ by guest on February 20, 2018 The subduction initiation stage of the Wilson cycle ROBERT HALL SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK [email protected] R.H., 0000-0003-1693-6914 Abstract: In the Wilson cycle, there is a change from an opening to a closing ocean when subduction begins. Subduction initiation is commonly identified as a major problem in plate tectonics and is said to be nowhere observable, yet there are many young subduction zones at the west Pacific margins and in eastern Indonesia. Few studies have considered these examples. Banda subduction developed by the eastwards propagation of the Java trench into an oceanic embayment by tearing along a former ocean–continent boundary. The earlier subducted slab provided the driving force to drag down unsubducted oceanic lithosphere. Although this process may be common, it does not account for young subduction zones near Sulawesi at different stages of develop- ment. Subduction began there at the edges of ocean basins, not at former spreading centres or transforms. It initiated at a point where there were major differences in elevation between the ocean floor and the adjacent hot, weak and thickened arc/continental crust. The age of the ocean crust appears to be unimportant. A close relationship with extension is marked by the dramatic elevation of land, the exhumation of deep crust and the spectacular subsidence of basins, raising questions about the time required to move from no subduction to active subduction, and how initiation can be identified in the geological record.
    [Show full text]