In Situ Detection of Protein Interactions for Recombinant Therapeutic Enzymes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distinct C-Terminal Amino Acid Sequence Motifs Serve As the Targeting Signals for Outer Mitochondrial Membrane and Plastid Outer Envelope TA Proteins
Distinct C-terminal Amino Acid Sequence Motifs Serve as the Targeting Signals for Outer Mitochondrial Membrane and Plastid Outer Envelope TA Proteins by Howard James Teresinski A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and cellular Biology Guelph, Ontario, Canada © Howard James Teresinski, January, 2015 ABSTRACT Distinct C-terminal amino acid sequence motifs serve as the targeting signals for outer mitochondrial membrane and plastid outer envelope TA proteins Howard James Teresinski Advisor: University of Guelph, 2014 Dr. Robert T. Mullen Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal transmembrane domain and their ability to insert post-translationally into specific organelles in an Ncytosol-CIMS orientation. While in recent years considerable progress has been made towards understanding the biogenesis of TA proteins in yeast and mammals, relatively little is known about how these proteins are properly partitioned within plant cells, mostly because so few plant TA proteins have been identified. Here we show the results of experiments aimed at cataloguing, in silico, all of the TA outer mitochondrial membrane and plastid outer envelope proteins in Arabidopsis and then identifying and characterising distinct, C-terminal targeting motifs responsible for the proper sorting of at least a subset of these proteins. Collectively, the results of this thesis provide important insight into the molecular mechanisms that underlie the biogenesis of TA proteins in plant cells. Acknowledgments I would first and foremost like to thank my MSc advisor Dr. -
And Multiple Conformations Kinase 4 Structures Reveal Novel Features Cutting Edge: IL-1 Receptor-Associated
Cutting Edge: IL-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features and Multiple Conformations This information is current as Andreas Kuglstatter, Armando G. Villaseñor, David Shaw, of September 23, 2021. Simon W. Lee, Stan Tsing, Linghao Niu, Kyung W. Song, Jim W. Barnett and Michelle F. Browner J Immunol 2007; 178:2641-2645; ; doi: 10.4049/jimmunol.178.5.2641 http://www.jimmunol.org/content/178/5/2641 Downloaded from References This article cites 23 articles, 5 of which you can access for free at: http://www.jimmunol.org/content/178/5/2641.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: IL-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features and Multiple Conformations Andreas Kuglstatter,1 Armando G. Villasen˜or, David Shaw, Simon W. -
Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Anion And Cation Binding In Proteins James David Watson Submitted for the degree of Doctor of Philosophy The University of Glasgow Faculty of IBLS September 2002 ProQuest Number: 10390636 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10390636 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. -
Computational Genome and Pathway Analysis of Halophilic Archaea
Computational Genome and Pathway Analysis of Halophilic Archaea Dissertation Michaela Falb aus Heiligenstadt (Eichsfeld) 2005 Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Computational Genome and Pathway Analysis of Halophilic Archaea Michaela Falb aus Heiligenstadt (Eichsfeld) 2005 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Dieter Oesterhelt betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, den 31. August 2005 Michaela Falb Dissertation eingereicht am: 01.09.2005 1. Gutachter: Prof. Dr. Dieter Oesterhelt 2. Gutachter: Prof. Dr. Erich Bornberg-Bauer Mündliche Prüfung am: 22.12.2005 CONTENTS Summary 1 1 Introduction to Halophilic Archaea 3 1.1 Hypersaline environments 3 1.2 Taxononomy of halophilic archaea 5 1.3 Information processing in archaea 7 1.4 Physiology and metabolism of halophilic archaea 9 1.4.1 Osmotic adaptation 9 1.4.2 Nutritional demands, nutrient transport and sensing 10 1.4.3 Energy metabolism 11 1.5 Genomes of halophilic archaea 13 1.6 Motivation 15 2 Gene Prediction and Start Codon Selection in Halophilic Genomes 17 2.1 Introduction 17 2.2 Post-processing of gene prediction results by expert validation 19 2.3 Intrinsic features of haloarchaeal proteins and gene context analysis 22 2.3.1 Isoelectric points and amino acid distribution of halophilic proteins 22 2.3.2 Development of a pI scanning tool -
Pump Ena1 Is a Yeast Epsin-Specific Cargo Requiring Its Ubiquitylation and Phosphorylation Sites for Internalization Arpita Sen1,*,§, Wen-Chieh Hsieh1,‡,§, Claudia B
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs245415. doi:10.1242/jcs.245415 RESEARCH ARTICLE The Na+ pump Ena1 is a yeast epsin-specific cargo requiring its ubiquitylation and phosphorylation sites for internalization Arpita Sen1,*,§, Wen-Chieh Hsieh1,‡,§, Claudia B. Hanna1, Chuan-Chih Hsu2, McKeith Pearson II1, W. Andy Tao2 and R. Claudio Aguilar1,¶ ABSTRACT Since Ub constitutes the main trafficking signal in Saccharomyces cerevisiae It is well known that in addition to its classical role in protein turnover, (reviewed in Lauwers et al., 2010), ubiquitylation is required for a variety of membrane protein sorting studies in yeast have been instrumental in advancing our events. However, and despite substantial progress in the field, a long- understanding of the mechanisms operating in Ub-mediated standing question remains: given that all ubiquitin units are identical, sorting. For example, it has been clearly established that budding how do different elements of the sorting machinery recognize their yeast utilizes the E3 ubiquitin ligase Rsp5 to promote cargo specific cargoes? Our results indicate that the yeast Na+ pump Ena1 ubiquitylation relevant to endocytosis and other vesicle trafficking is an epsin (Ent1 and Ent2 in yeast)-specific cargo and that its events (Belgareh-Touze et al., 2008; Lauwers et al., 2010). Indeed, internalization requires K1090, which likely undergoes Art3-dependent Rsp5-mediated ubiquitylation is required for the internalization of ubiquitylation. In addition, an Ena1 serine and threonine (ST)-rich cargoes such as the pheromone receptor Ste2 (Dunn and Hicke, patch, proposed to be targeted for phosphorylation by casein 2001; Hicke and Riezman, 1996), the uracil transporter Fur4 (Galan kinases, was also required for its uptake. -
In Situ Detection of Protein Interactions for Recombinant Therapeutic Enzymes
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.081885; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In situ detection of protein interactions for recombinant therapeutic enzymes Mojtaba Samoudi*,1,2, Chih-Chung Kuo*,2,3, Caressa M. Robinson*,2,3, Km Shams-Ud- Doha4, Song-Min Schinn1,2, Stefan Kol5, Linus Weiss6, Sara Petersen Bjorn5, Bjorn G. Voldborg5, Alexandre Rosa Campos4, Nathan E. Lewis1,2,3, 1 Dept of Pediatrics, University of California, San Diego 2 Novo Nordisk Foundation Center for Biosustainability at UC San Diego 3 Dept of Bioengineering, University of California, San Diego 4 Sanford Burnham Prebys Medical Discovery Institute 5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 6 Dept of Biochemistry, Eberhard Karls University of Tübingen, Germany * Equal contribution Correspondence to Nathan E. Lewis, [email protected] Abstract Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and post-translational modifications (PTMs). Here we aimed to identify the machinery supporting recombinant protein secretion by measuring the protein-protein interaction (PPI) networks of four different recombinant proteins (SERPINA1, SERPINC1, SERPING1 and SeAP) with various PTMs and structural motifs using the proximity- dependent biotin identification (BioID) method. We identified PPIs associated with specific features of the secreted proteins using a Bayesian statistical model, and found proteins involved in protein folding, disulfide bond formation and N-glycosylation were positively correlated with the corresponding features of the four model proteins. -
Genetic Analysis of VCP and WASH Complex Genes in a German Cohort of Sporadic ALS-FTD Patients
Genetic analysis of VCP and WASH complex genes in a German cohort of sporadic ALS-FTD patients Author Tuerk, Matthias, Schroeder, Rolf, Khuller, Katharina, Hofmann, Andreas, Berwanger, Carolin, Ludolph, Albert C, Dekomien, Gabriele, Mueller, Kathrin, Weishaupt, Jochen H, Thiel, Christian T, Clemen, Christoph S Published 2017 Journal Title Neurobiology of Aging Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.neurobiolaging.2017.04.023 Copyright Statement © 2017 Federation of European Biochemical Societies, published by Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http:// creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/346255 Griffith Research Online https://research-repository.griffith.edu.au Genetic analysis of VCP and WASH-complex genes in a German cohort of sporadic ALS-FTD patients Matthias Türk, MD1,#; Christoph S. Clemen, MD2; Katharina Timmer, MD3; Andreas Hofmann, PhD4,5; Albert C. Ludolph, MD6; Gabriele Dekomien, PhD3; Kathrin Müller, PhD6; Jochen H. Weishaupt, MD6; Rolf Schröder, MD7; Christian T. Thiel, MD8 1Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany 2Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany 3Department for Human Genetics, Ruhr-University Bochum, Bochum, Germany -
STAND, a Class of P-Loop Ntpases Including Animal and Plant
doi:10.1016/j.jmb.2004.08.023 J. Mol. Biol. (2004) 343, 1–28 STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer Detlef D. Leipe, Eugene V. Koonin and L. Aravind* National Center for Using sequence profile analysis and sequence-based structure predictions, Biotechnology Information we define a previously unrecognized, widespread class of P-loop NTPases. National Library of Medicine The signal transduction ATPases with numerous domains (STAND) class National Institutes of Health includes the AP-ATPases (animal apoptosis regulators CED4/Apaf-1, Bethesda, MD 20894, USA plant disease resistance proteins, and bacterial AfsR-like transcription regulators) and NACHT NTPases (e.g. NAIP, TLP1, Het-E-1) that have been studied extensively in the context of apoptosis, pathogen response in animals and plants, and transcriptional regulation in bacteria. We show that, in addition to these well-characterized protein families, the STAND class includes several other groups of (predicted) NTPase domains from diverse signaling and transcription regulatory proteins from bacteria and eukaryotes, and three Archaea-specific families. We identified the STAND domain in several biologically well-characterized proteins that have not been suspected to have NTPase activity, including soluble adenylyl cyclases, nephrocystin 3 (implicated in polycystic kidney disease), and Rolling pebble (a regulator of muscle development); these findings are expected to facilitate elucidation of the functions of these proteins. The STAND class belongs to the additional strand, catalytic E division of P-loop NTPases together with the AAAC ATPases, RecA/helicase-related ATPases, ABC-ATPases, and VirD4/PilT-like ATPases. -
Structures of Β-Klotho Reveal a ‘Zip Code’-Like Mechanism for Endocrine FGF Signalling Sangwon Lee1, Jungyuen Choi1, Jyotidarsini Mohanty1, Leiliane P
LETTER doi:10.1038/nature25010 Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling Sangwon Lee1, Jungyuen Choi1, Jyotidarsini Mohanty1, Leiliane P. Sousa1, Francisco Tome1, Els Pardon2, Jan Steyaert2, Mark A. Lemmon1, Irit Lax1 & Joseph Schlessinger1 Canonical fibroblast growth factors (FGFs) activate FGF receptors demonstrates the strong similarity of both D1 and D2 to glycoside (FGFRs) through paracrine or autocrine mechanisms in a process hydrolase family-1 (GH1) enzymes (Fig. 1d, e). GH1 enzymes hydrolyse that requires cooperation with heparan sulfate proteoglycans, glycosidic linkages between carbohydrate moieties (http://www.cazy. which function as co-receptors for FGFR activation1,2. By contrast, org/GH1.html) through a double-replacement mechanism mediated by endocrine FGFs (FGF19, FGF21 and FGF23) are circulating two conserved glutamate residues located in their active sites6. In each hormones that regulate critical metabolic processes in a variety of the sKLB domains, one of these two ‘catalytic’ glutamates is replaced of tissues3,4. FGF19 regulates bile acid synthesis and lipogenesis, by another amino acid (Fig. 1d–f): the first glutamate in D1 is replaced whereas FGF21 stimulates insulin sensitivity, energy expenditure by Asn241, and the second glutamate in D2 is replaced by Ala889. This and weight loss5. Endocrine FGFs signal through FGFRs in a indicates that neither glycoside hydrolase-like domain in β-klotho can manner that requires klothos, which are cell-surface proteins that function as an active glycoside- hydrolase enzyme. Structural alignment possess tandem glycosidase domains3,4. Here we describe the crystal using the Dali server7 indicates that GH1 and GH5 members exhibit structures of free and ligand-bound β-klotho extracellular regions high structural similarities to each of the glycoside hydrolase-like that reveal the molecular mechanism that underlies the specificity of domains of sKLB, suggesting a common evolutionary origin. -
DEC 01 Nucleus N/L Too Bob2
DED UN 18 O 98 F yyyy N yyyy Y O T R E I T H C E N O yyyy A E S S S L T A E A C R C I yyyyN S M S E E H C C T N IO A December 2001 Vol. LXXX, No. 4 yyyyC N • AMERI Monthly Meeting Medicinal Chemistry Group Symposium on Lyosomal Storage Diseases Book Review Emergency Preparedness Planning by T.S. Pasquarelli and F.K. Wood-Black Board of Directors Notes of the meeting of September 13 Amino Acid Tales Teaching the amino acids for an introductory biochemistry course à la Chaucer 2 The Nucleus December 2001 The Northeastern Section of the American 2002 Norris Award nominations sought ____________________4 Chemical Society, Inc. Office: Marilou Cashman, 23 Cottage St., Natick, MA 01760. 1-800-872-2054 Monthly Meeting ______________________________________ 5 (Voice or FAX) or 508-653-6329. Joint meeting with the Medicinal Chemistry Group. Mini-Symposium on e-mail: [email protected] Any Section business may be conducted Approaches to the treatment of Lyosomal Storage Diseases via the business office above. NESACS Homepage: http://www.NESACS.org Book Review __________________________________________7 Frank R. Gorga, Webmaster Emergency Preparedness Planning. A Primer for Chemists, by Timothy L. Washington, D.C. ACS Hotline: 1-800-227-5558 Pasquarelli and Frankie K. Wood-Black; reviewed by Robert Litman Officers 2001 Chair: Board of Directors 8 Timothy B. Frigo _____________________________________ Advanced Magnetics, Inc. Notes of the meeting of September 13, 2001 61 Mooney St., Cambridge, MA 02138 617-497-2070x3007; [email protected] Chair-Elect: Green Chemistry Challenge ______________________________9 Morton Z. -
Theses Digitisation: This Is a Digitised Version of the Original Print Thesis. Copyright and Moral
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] The Geometry of Hydrogen-Bonds and Carbonyl-Carbonyl Interactions Between Tra/is-Amides in Proteins and Small Molecules William John Buddy Submitted for the degree of Doctor of Philosophy Division of Biochemistry and Molecular Biology Faculty of Biomedical and Life Sciences UNIVERSITY o / GLASGOW April 2005 ProQuest Number: 10391071 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10391071 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. -
Msdmotif: Exploring Protein Sites and Motifs Adel Golovin and Kim Henrick*
BMC Bioinformatics BioMed Central Software Open Access MSDmotif: exploring protein sites and motifs Adel Golovin and Kim Henrick* Address: EMBL Outstation, The European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridge, UK Email: Adel Golovin - [email protected]; Kim Henrick* - [email protected] * Corresponding author Published: 17 July 2008 Received: 7 May 2008 Accepted: 17 July 2008 BMC Bioinformatics 2008, 9:312 doi:10.1186/1471-2105-9-312 This article is available from: http://www.biomedcentral.com/1471-2105/9/312 © 2008 Golovin and Henrick; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug- design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results: We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options.