bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.081885; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In situ detection of protein interactions for recombinant therapeutic enzymes Mojtaba Samoudi*,1,2, Chih-Chung Kuo*,2,3, Caressa M. Robinson*,2,3, Km Shams-Ud-Doha4, Song-Min Schinn1,2, Stefan Kol5, Linus Weiss6, Sara Petersen Bjorn5, Bjorn G. Voldborg5, Alexandre Rosa Campos4, Nathan E. Lewis1,2,3,§ 1 Dept of Pediatrics, University of California, San Diego 2 Novo Nordisk Foundation Center for Biosustainability at UC San Diego 3 Dept of Bioengineering, University of California, San Diego 4 Sanford Burnham Prebys Medical Discovery Institute 5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 6 Dept of Biochemistry, Eberhard Karls University of Tübingen, Germany § Corresponding author: Nathan E. Lewis 9500 Gilman Dr. MC 0760, Building BRF2, Room 4a16, La Jolla, CA 92093 Email:
[email protected], Tel: (858) 997 – 5844 Short title: In situ detection of protein interactions. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.081885; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and post-translational modifications (PTMs).