Lecture Notes on General Topology Bit, Spring 2021

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes on General Topology Bit, Spring 2021 LECTURE NOTES ON GENERAL TOPOLOGY BIT, SPRING 2021 DAVID G.L. WANG Contents 1. Introduction 2 1.1. Who cares topology? 2 1.2. Geometry v.s. topology 2 1.3. The origin of topology 3 1.4. Topological equivalence 5 1.5. Surfaces 6 1.6. Abstract spaces 6 1.7. The classification theorem and more 6 2. Topological Spaces 8 2.1. Topological structures 8 2.2. Subspace topology 12 2.3. Point position with respect to a set 14 2.4. Bases of a topology 19 2.5. Metrics & the metric topology 21 3. Continuous Maps & Homeomorphisms 30 3.1. Continuous maps 30 3.2. Covers 35 3.3. Homeomorphisms 37 4. Connectedness 45 4.1. Connected spaces 45 Date: March 2, 2021. 1 4.2. Path-connectedness 53 5. Separation Axioms 57 5.1. Axioms T0, T1, T2, T3 and T4 57 5.2. Hausdor↵spaces 60 5.3. Regular spaces & normal spaces 62 5.4. Countability axioms 65 6. Compactness 68 6.1. Compact spaces 68 6.2. Interaction of compactness with other topological properties 70 7. Product Spaces & Quotient Spaces 75 7.1. Product spaces 75 7.2. Quotient spaces 81 Appendix A. Some elementary inequalities 88 3 1. Introduction 1.1. Who cares topology? The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz “for theoretical discoveries of topological phase transitions and topo- logical phases of matter”; see Fig. 1. Figure 1. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electronical conductivity inside thin layers changes in integer steps. Stolen from Popular Science Background of the Nobel Prize in Physics 2016, Page 4(5). Topology, over most of its history, has NOT generally been applied outside of mathematics (with a few interesting exceptions). WHY? TOO abstract? The ancient mathematicians could not even convince of the subject. • It is qualitative, not quantitative? People think of science as a quantitative endeavour. • 1.2. Geometry v.s. topology. Below are some views from Robert MacPherson, a plenary addresser at the ICM in Warsaw in 1983. Geometry (from ancient Greek): geo=earth, metry=measurement. • Topology (from Greek): ⌧´o ⇡oσ=place/position, λ´o γoσ=study/discourse. 4 D.G.L. WANG Figure 2. Screenshot from a video of Robert MacPherson’s talk in Institute for Advanced Study. Topology is “geometry” without measurement. • It is qualitative (as opposed to quantitative) “geometry”. Geometry: The point M is the midpoint of the straight line segment L connecting • A to B. Topology: The point M lies on the curve L connecting A to B. Geometry calls its objects configurations (circles, triangles, etc.) • Topology calls its objects spaces. 1.3. The origin of topology. Here are three stories about the origin of topology. 1.3.1. The seven bridges of K¨onigsberg. The problem was to devise a walk through the city that would cross each of those bridges once and only once; see Fig. 3. The negative resolution by Leonhard Paul Euler (1707–1783) in 1736 laid the founda- tions of graph theory and prefigured the idea of topology. The difficulty Euler faced was the development of a suitable technique of analysis, and of subsequent tests that established this assertion with mathematical rigor. Euler was a Swiss mathematician, physicist, astronomer, logician and engineer who made important and influential discoveries in many branches of mathematics like infinitesimal calculus and graph theory, while also making pioneering contributions to several branches such as topology and analytic number theory. 1.3.2. The four colour theorem. The four colour theorem states that given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colours are required to colour the regions of the map so that no two adjacent regions have the same color. 5 Figure 3. Map of K¨onigsberg in Euler’s time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges. Stolen from Wiki. The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. 1.3.3. Euler characteristic. χ = v e + f; see Fig. 4. − Figure 4. Stamp of the former German Democratic Republic honouring Euler on the 200th anniversary of his death. Across the centre it shows his polyhedral formula. Stolen from Wiki. We use the terminology polyhedron to indicate a surface rather than a solid. Theorem 1.1 (Euler’s polyhedral formula). Let P be a polyhedron s.t. Any two vertices of P can be connected by a chain of edges. • Any cycle along edges of P which is made up of straight line segments (not necessarily • edges) separates P into 2 pieces. Then the Euler number or Euler characteristic χ =2for P . 1750: first appear in a letter from Euler to Christian Goldbach (1690–1764). • 1860 (around): M¨obiusgave the idea of explaining topological equivalence by thinking • of spaces as being made of rubber.ItworksforconcaveP . 6 D.G.L. WANG David Eppstein collected 20 proofs of Theorem 1.1. • In 3-dimensional space, a Platonic solid is a regular, convex polyhedron. The Euler characteristic of every Platonic solid is 2. In fact, there are only 5 (why?) Platonic solids: the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron; see Fig. 5. Figure 5. The Plotonic solids. Stolen from Wiki. 1.4. Topological equivalence. =homeomorphism;seeSection1.6. p :thicken,stretch,bend,twist,...; :identify,tear,.... ⇥ See Fig. 6. Figure 6. Some surfaces which are not equivalent. Stolen from Haldane’s slides on Dec. 8th, 2016. 7 Theorem 1.2. Topological equivalent polyhedra have the same Euler characteristic. The starting point for modern topology. • Search for unchanged properties of spaces under topological equivalence. • χ =2belongstoS2,ratherthantoparticularpolyhedra define χ for S2. • ! Theorem 1.2:di↵erentcalculations,sameanswer. • 1.5. Surfaces. What exactly do we mean by a “space”? Homeomorphism Continuity. • ! Geometry Boundedness. • ! 1.6. Abstract spaces. The axioms for a topological space appearing for the first time in 1914 in the work of Felix Hausdor↵ (1868–1942). Hausdor↵, a German mathematician, is considered to be one of the founders of modern topology, who contributed significantly to set theory, descriptive set theory, measure theory, function theory, and functional analysis. How has modern definition of a topological space been formed? (1) General enough to allow set of points or functions, and performable constructions like the Cartesian products and the identifying. Enough information to define the continuity of functions between spaces. (2) Cauchy: distances continuity. ! (3) No distance! Continuity neighbourhood axiom. Afunctionf : Em En is continuous if given any x Em and any neighbourhood 1 ! 2 U of f(x), then f − (U)isaneighbourhoodofx. 1.7. The classification theorem and more. Theorem 1.3 (Classification theorem). Any closed surface is homeomorphic to S2 with either a finite number of handles added, or a finite number of M¨obiusstrips added. No two of these surfaces are homeomorphic. Definition 1.4. The S2 with n handles added is called an orientable surface of genus n. Non-orientable surfaces can be defined analogously. Historical notes. The classification of surfaces was initiated and carried through in the orientable case by M¨obiusin a paper which he submitted for consideration for the Grand Prix de Math´ematiques of the Paris Academy of Sciences. He was 71 at the time. The jury did not consider any of the manuscripts received as being worthy of the prize, and M¨obius’ work finally appeared as just another mathematical paper. 8 D.G.L. WANG Decide = or =. ⇠ 6⇠ =: construct a homeomorphism; techniques vary. • ⇠ ⇠=:lookfortopologicalinvariants,e.g.,geometricproperties,numbers,algebraic • systems.6 Examples to show =. 6⇠ E1 = E2:connectedness,h: E1 0 E2 h(0) . • 6⇠ \{ }! \{ } Poincar´e’s construction idea: assign a group to each topological space so that • homeomorphic spaces have isomorphic groups. But group isomorphism does not imply homeomorphism. Here are some theorems that the fundamental groups help prove. Theorem 1.5 (Classification of surfaces). No 2 surfaces in Theorem 1.3 have isomorphic fundamental groups. Theorem 1.6 (Jordan separation theorem). Any simple closed curve in E1 divides E1 into 2 pieces. See Fig. 7. Figure 7. Marie Ennemond Camille Jordan (1838–1922) was a French mathematician, known both for his foundational work in group theory and for his influential Cours d’analyse. The Jordan curve (drawn in black) divides the plane into an “inside” region (light blue) and an “outside” region (pink). Stolen from Wiki. Theorem 1.7 (Brouwer fixed-point theorem). Any continuous function from a disc to itself leaves at least one point fixed. See Fig. 8. Theorem 1.8 (Nielsen-Schreier theorem). A subgroup of a free group is always free. 9 Figure 8. Luitzen Egbertus Jan Brouwer (1881–1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathe- matician and philosopher, who worked in topology, set theory, measure theory and complex analysis. He was the founder of the mathematical philosophy of intuitionism. Stolen from Wiki. 2. Topological Spaces The definition of topological space fits quite well with our intuitive idea of what a space ought to be. Unfortunately it is not terribly convenient to work with. We want an equivalent, more manageable, set of axioms! 2.1. Topological structures. Definition 2.1. Let X be a set and ⌦ 2X . ✓ A(topological)space is a pair (X, ⌦), where the collection ⌦, called a topology or • topological structure on X,satisfiestheaxioms (i) ⌦andX ⌦; ;2 2 (ii) the union of any members of ⌦lies in ⌦; (iii) the intersection of any two members of ⌦lies in ⌦.
Recommended publications
  • Mathematical Perspectives
    MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 4, October 2009, Pages 661–666 S 0273-0979(09)01264-6 Article electronically published on May 14, 2009 ANDREWEIL´ ARMAND BOREL The mathematician Andr´e Weil died in Princeton at the age of ninety-two, after a gradual decline in his physical, but not mental, capacities. In January 1999, a conference on his work and its influence took place at the Institute for Advanced AndreWeil´ 6 May 1906–6 August 1998 This article is from the Proceedings of the American Philosophical Society, vol. 145, no. 1, March 2001, pp. 108–114. Reprinted with permission. c 2009 American Mathematical Society 661 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 662 ARMAND BOREL Study, the poster of which gave this capsule description of him: A man of formidable intellectual power, moved by a global view and knowledge of mathematics, of its history and a strong belief in its unity, Andr´e Weil has profoundly influenced the course of mathe- matics by the breadth and depth of his publications, his correspon- dence and his leading contributions to the work of N. Bourbaki, a statement of which this text is basically just an elaboration. In attempting to give an impression of Weil’s work and thought processes, I shall have to navigate between the Charybdis of undefined mathematical jargon and the Scylla of vague, seemingly but not necessarily more understandable, statements. I hope the reader will bear with me! Andr´e Weil was born in Paris in a Jewish family, to an Alsatian physician and his Russian-born wife, of Austrian origin.
    [Show full text]
  • Mathematicians Who Never Were
    Mathematical Communities BARBARA PIERONKIEWICZ Mathematicians Who . H. Hardy and his close friend and long-time collaborator J. Littlewood are well known today. GGMost mathematicians of their time knew their names, Never Were too. However, since Littlewood had been seen in public places far less often than Hardy, some people joked about BARBARA PIERONKIEWICZ whether he really existed or not. Some even speculated openly that maybe Littlewood was only ‘‘a pseudonym that Hardy put on his weaker papers’’ (Krantz 2001, p. 47). Let’s make it clear then: Littlewood was not just ‘‘a figment of This column is a forum for discussion of mathematical Hardy’s imagination’’ (Fitzgerald and James 2007, p. 136). He was real, unlike most of the famous scientists explored communities throughout the world, and through all in this article. time. Our definition of ‘‘mathematical community’’ is Nicolas Bourbaki The title of the ‘‘Most Famous Mathematician Who Never the broadest: ‘‘schools’’ of mathematics, circles of Existed’’ would probably go to Nicolas Bourbaki. In 1935 correspondence, mathematical societies, student this name was chosen as a pen name by a group of young mathematicians educated at the E´cole Normale Supe´rieure organizations, extra-curricular educational activities in Paris. The founders of the group were Henri Cartan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean (math camps, math museums, math clubs), and more. Dieudonne´, Charles Ehresmann, Rene´ de Possel, Szolem Mandelbrojt, and Andre´ Weil. In 1952 they formed a group What we say about the communities is just as called Association des Collaborateurs de Nicolas Bourbaki. unrestricted. We welcome contributions from Through the years, the collective identity of Bourbaki has gathered numerous mathematicians, including Alexandre mathematicians of all kinds and in all places, and also Grothendieck, Armand Borel, Gustave Choquet, and many others.
    [Show full text]
  • The Nilpotence and Periodicity Theorems in Stable Homotopy Theory Séminaire N
    SÉMINAIRE N. BOURBAKI DOUGLAS C. RAVENEL The nilpotence and periodicity theorems in stable homotopy theory Séminaire N. Bourbaki, 1989-1990, exp. no 728, p. 399-428. <http://www.numdam.org/item?id=SB_1989-1990__32__399_0> © Association des collaborateurs de Nicolas Bourbaki, 1989-1990, tous droits réservés. L’accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l’accord avec les conditions générales d’utilisa- tion (http://www.numdam.org/legal.php). Toute utilisation commer- ciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire BOURBAKI juin 1990 42eme annee, 1989-90, n° 728 THE NILPOTENCE AND PERIODICITY THEOREMS IN STABLE HOMOTOPY THEORY by Douglas C. RAVENEL 1 Introduction and statement of theorems In this paper we will outline some recent results in stable homotopy theory due to Devinatz, Hopkins and J. Smith ([DHS88], [Hop87] and [HS]) and conjectured by the author in [Rav84]. A more detailed account will appear in [Rav]. The theorems in question address one of the fundamental questions in algebraic to topology: how determine, by algebraic methods, when a continuous map from one topological space to another is homotopic to a constant map, i.e., a map that sends all of the source space to a single point in the target. This is the simplest case of the homotopy classification problem, which is to determine the set of homotopy classes of continuous maps from a space X to a space Y, and to classify spaces (satisfying various conditions) up to homotopy equivalence.
    [Show full text]
  • N. Bourbaki Éléments D'histoire Des Mathématiques (Hermann, Paris
    BOOK REVIEWS LANDAU, E., Grundlagen der Analysis (Chelsea Publishing Company, 3rd edition, 1960), 173 pp., SI.95. This new edition of the lucid German text from which the English translation was made (Foundations of Analysis, translated by F. Steinhardt, Chelsea Publishing Company, 1951, reprint 1957) is aimed at English-speaking students. The volume contains the author's prefaces in both German and English, and, as appendix, a German-English vocabulary and some useful hints on translation. The publisher's preface claims that perusal of the text, aided by the glossary, should present no great difficulty to a student even without previous knowledge of German and would endow him with a good background of mathematical German. This may well be correct but, if the student is to succeed in mastering the text in two days (as the author wishes), he would be well advised to read the English translation. ELIZABETH A. MCHARG BOURBAKI, N., Elements d'Histoire des Mathematiques (Hermann, Paris, 1960), 276 pp., 18 NF. The separate volumes, collectively called Elements de Mathematique, of the omniscient author Nicolas Bourbaki were each supplied with a Note historique, which greatly increased their value. It is of still greater value to have most of these notes assembled in one historical volume; and this makes up the present book. There will presumably be another volume when other volumes on mathematics have made their appearance. The present volume disclaims, in the Avertissement, any intention of being a history of mathematics; none the less, the introductory pages of each chapter do give a summarised conspectus of the earlier history of each subject.
    [Show full text]
  • Lambert's Proof of the Irrationality of Pi
    Lambert’s proof of the irrationality of Pi: Context and translation Denis Roegel To cite this version: Denis Roegel. Lambert’s proof of the irrationality of Pi: Context and translation. [Research Report] LORIA. 2020. hal-02984214 HAL Id: hal-02984214 https://hal.archives-ouvertes.fr/hal-02984214 Submitted on 30 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lambert’s proof of the irrationality of π: Context and translation this is a preliminary draft please check for the final version Denis Roegel LORIA, Nancy1 30 October 2020 1Denis Roegel, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy cedex, [email protected] 2 3 In this document, I give the first complete English translation of Johann Heinrich Lambert’s memoir on the irrationality of π published in 1768 [92], as well as some contextual elements, such as Legendre’s proof [98] and more recent proofs such as Niven’s [109]. Only a small part of Lambert’s memoir has been translated before, namely in Struik’s source book [143]. My trans- lation is not based on that of Struik and it is supplemented with notes and indications of gaps or uncertain matters.
    [Show full text]
  • Orthogonal Root Numbers of Tempered Parameters 3
    ORTHOGONAL ROOT NUMBERS OF TEMPERED PARAMETERS DAVID SCHWEIN Abstract. We show that an orthogonal root number of a tempered L-parameter ϕ decom- poses as the product of two other numbers: the orthogonal root number of the principal parameter and the value on a certain involution of Langlands’s central character for ϕ. The formula resolves a conjecture of Gross and Reeder and computes root numbers of Weil- Deligne representations arising in the work of Hiraga, Ichino, and Ikeda on the Plancherel measure. Contents 1. Introduction 2 1.1. Notational conventions 4 1.2. Acknowledgments 5 2. Group cohomology 5 2.1. Group extensions 5 2.2. Borel cohomology 8 2.3. The key lemma 9 3. Stiefel-Whitney classes 11 3.1. Classifying spaces 11 3.2. Definition for vector bundles 12 3.3. Definition for representations 13 3.4. Deligne’s theorem 14 4. Spin lifting 15 4.1. Lifting criterion 16 4.2. Comparison with Bourbaki 18 4.3. Spin character 19 arXiv:2107.02360v1 [math.NT] 6 Jul 2021 5. Central characters and Weil cohomology 20 5.1. Cohomology of the Weil group 21 5.2. Harish-Chandra subgroup 21 5.3. Evaluation at an involution 23 5.4. Involutions from representations of L-groups 24 6. Synthesis 26 6.1. Proof of Theorem A 26 6.2. Application to Plancherel measure 27 Appendix A. Characters via Weil-Tate duality 27 References 30 Date: 5 July 2021. 1 2 DAVID SCHWEIN 1. Introduction To every representation of the absolute Galois group Γk of a local field k, or more generally, of its Weil-Deligne group WDk, we can attach various local constants, the γ-, L-, and ε- factors, each a function of a complex parameter s.
    [Show full text]
  • PDF Generated By
    8 The Functional Role of Structures in Bourbaki Gerhard Heinzmann and Jean Petitot 1. Introduction From antiquity to the 19th century and even up to now, the following two theses are among the most debated in the philosophy of mathematics: a) According to the Aristotelian tradition, mathematical objects such as num- bers, quantities, and figures are entities belonging to different kinds. b) Mathematical objects are extralinguistic entities that exist, independently of our representations, in an abstract world. They are conceived by analogy with the physical world and designated by singular terms of a mathemat- ical language. The Aristotelian thesis and that of ontological “Platonism” were countered by nominalism and early tendencies of algebraic formalization; but they became even more problematic when mathematicians, such as Niels Abel, thought of re- lations before their relata or when they, as Hermann Hankel (1867) pointed out, posited that mathematics is a pure theory of forms whose purpose is not that of treating quantities or combinations of numbers (see Bourbaki 1968, 317). In the 1930s, Bourbaki finally defended the view that mathematics does not deal with traditional mathematical objects at all, but that objectivity is solely based on the stipulation of structures and their development in a hierarchy. In the history of 20th- century mathematical structuralism, the figure of Bourbaki is prominent; sometimes he is even identified with the philosoph- ical doctrine of structuralism. However, the Bourbaki group consisted of pure mathematicians— among them the greatest of their generation—most of whom had a conflicted relationship to philosophy. This chapter proposes to explore this tension, following the current philosophical interest in scientific practice.
    [Show full text]
  • The Ignorance of Bourbaki ARD Mathias
    The Ignorance of Bourbaki A.R.D.Mathias If one looks at the history of mathematics, one sees periods of bursting creativity, when new ideas are being developed in a competitive and therefore very hasty spirit; and periods when people find that the ideas so recently in vogue are inexact, incoherent, possibly inconsistent; in such periods there is an urge to consolidate past achievements. I said \the history of mathematics": but mathematics is a complex sociological organism, and its growth takes place in different branches and in different countries, even different universities, in different ways and at different speeds. Sometimes national groups feel that mathematics in their country is in a bad way: you find an expression of that in the Introduction to later editions of Hardy's Pure Mathematics, where he remarks that it was written with an enthusiasm intended to combat the insularity of British mathematics of the turn of the century, which had taken no account of the development of mathematics in France in the nineteenth century. Indeed in 1910 France could be proud of her succession of mathematicians such as Legendre, Laplace, Lagrange, Fourier, Cauchy, Galois, Dirichlet,1 Hadamard, Poincar´e | a most impressive list of scholars of the highest distinction. But after the first World War, the feeling in France changed, and the young French mathematicians of the day began to consider that the torch of mathematical research had passed to Germany | where there were many great mathematicians building on the past work of Riemann, Frobenius, Dedekind, Kummer, Kronecker, Minkowski and Cantor, such as Klein, Hilbert, Weyl, Artin, Noether, Landau, and Hausdorff, | and that French mathematics had gone into a decline.
    [Show full text]
  • Donald Coxeter: the Man Who Saved Geometry
    Donald Coxeter: The Man who Saved Geometry Siobhan Roberts 588 Markham Street, Studio #8 Toronto, ON M6G 2L8 Email: [email protected] Abstract Siobhan Roberts met Donald Coxeter when she was a journalist at the National Post and writing a profile on the greatest living classical geometer. Shortly thereafter, she followed Coxeter to the last two geometry conferences he would attend — at Banff, Alberta, and then at Budapest, Hungary, in 2002 for a celebration of the 200th anniversary of the birth of János Bolyai (1802-1860), one of the discoverers of non-Euclidean geometry. Coxeter inspired many mathematicians over his long career. Roberts was similarly entranced by the man and his geometry, notwithstanding the fact that she was a geometrical innocent. Four years later, she is completing her biography of Coxeter. It is to be published by Penguin in Canada and Walker & Company (Bloomsbury) in the United States (as well as publishers in Italy, Japan, and Korea), in the fall of 2006. This piece is an excerpt from the introduction to the Coxeter biography. Coxeter with one of his kaleidoscopes, circa 1960. Whenever I dared mention I was writing a book about the man who saved geometry from near extinction — when the topic came up at a dinner party, for instance — the conversation usually skipped a beat or ten. Expressions around the room took on various shades of stupefaction as people entertained flashbacks of math class anxieties, fumbling with compasses and protractors and memorizing the Pythagorean theorem. Geometry was seared in their minds as a traumatizing experience, a subject enthusiastically abandoned, and as a result people branded themselves “anti-geometry,” or at the very least, “geometraphobes.” The conversation resumed only when one brave individual broke the silence with some variation on this rejoinder: “This guy saved geometry?!? WHY, on Earth, did he do that? He would have saved us all a lot of misery if he had let it die!” I came across a more reassuring sentiment one weekend while visiting my sleepy hometown in eastern Ontario.
    [Show full text]
  • Bourbaki and Algebraic Topology by John Mccleary It Is Now More Than
    Bourbaki and Algebraic Topology by John McCleary The principal aim of the Bourbaki group (L’Association des Collaborateurs de Nicolas Bourbaki) is to provide a solid foundation for the whole body of modern mathematics. The method of exposition is axiomatic and abstract, logically coherent and rigorous, proceeding normally from the general to the particular, a style found to be not altogether congenial to many readers. The ongoing series of books began with El´ementsde´ Math´ematiques in 1939, and other books on algebra, set theory, topology, and other topics have followed. Many books in the series have become standard references, though some mathematicians are critical of their austerely abstract point of view. from http://www.encyclopedia.com/html/B/BourbakiN1.asp, Dec. 3, 2004 It is now more than 70 years ago that the founders of Le Comit´ede r´edactiondu trait´ed’analyse met in Paris at the Caf´eA. Capoulade, 63 boulevard Saint-Michel, to discuss the drafting of a textbook on analysis. This meeting included (recent centenarian) Henri Cartan (1904– ), Claude Chevalley (1909–1984), Jean Delsarte (1903– 1968), Jean Dieudonne´ (1906–1992), Rene´ de Possel (1905–1974), and Andre´ Weil (1906–1998). The fate of this project is the story of the Bourbaki, or should I say, the story of the character Nicolas Bourbaki, author of El´ementsde´ math´ematique, a series of influential expositions of the basic notions of modern mathematics. This talk is based on a wild goose chase after a document. The project was supported by the Gabriel Snyder Beck Fund at Vassar College that funds research on anything French.
    [Show full text]
  • Twenty-Five Years with Nicolas Bourbaki, 1949-1973
    Twenty-Five Years with Nicolas Bourbaki, 1949–1973 Armand Borel he choice of dates is dictated by per- To set the stage, I shall briefly touch upon the sonal circumstances: they roughly bound first fifteen years of Bourbaki. They are fairly well the period in which I had inside knowl- documented2, and I can be brief. edge of the work of Bourbaki, first In the early thirties the situation of mathemat- through informal contacts with several ics in France at the university and research levels, T the only ones of concern here, was highly unsat- members, then as a member for twenty years, until the mandatory retirement at fifty. isfactory. World War I had essentially wiped out one Being based largely on personal recollections, generation. The upcoming young mathematicians my account is frankly subjective. Of course, I had to rely for guidance on the previous one, in- checked my memories against the available docu- cluding the main and illustrious protagonists of the mentation, but the latter is limited in some ways: so-called 1900 school, with strong emphasis on not much of the discussions about orientation and analysis. Little information was available about current developments abroad, in particular about general goals has been recorded.1 Another mem- the flourishing German school (Göttingen, Ham- ber might present a different picture. burg, Berlin), as some young French mathemati- cians (J. Herbrand, C. Chevalley, A. Weil, J. Leray) Armand Borel is professor emeritus at the School of Math- were discovering during visits to those centers.3 ematics, Institute for Advanced Study, Princeton, NJ.
    [Show full text]
  • The Mathematician's Brain
    The Mathematician's Brain DAVID RUELLE The Mathematician's Brain DAVID RUELLE PRI NCETON UNIVE RSITY PRESS PRIN C ETON AND OXFORD Copyright © 2007 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 ISY All Rights Reserved Library of Congress Cataloging-in-Publication Data Ruelle, David. The mathematician's brain / David Ruelle. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-691-12982-2 (cl : acid-free paper) ISBN-I0: 0-691-12982-7 (cl : acid-free paper) 1. Mathematics-Philosophy. 2. Mathematicians-Psychology. 1. Title. QA8.4.R84 2007 51D--dc22 2006049700 British Library Cataloging-in-Publication Data is available This book has been composed in Palatino Printed on acid-free paper. = press.princeton.edu Printed in the United States of America 1 3 5 7 9 10 8 6 4 2 Preface vii 1. Scientific Thinking 1 2. What Is Mathematics? 5 3. The Erlangen Program 11 4. Mathematics and Ideologies 17 5. The Unity of Mathematics 23 6. A Glimpse into Algebraic Geometry and Arithmetic 29 7. A Trip to Nancy with Alexander Grothendieck 34 8. Structures 41 9. The Computer and the Brain 46 10. Mathematical Texts 52 11. Honors 57 12. Infinity: The Smoke Screen of the Gods 63 13. Foundations 68 14. Structures and Concept Creation 73 15. Turing's Apple 78 16. Mathematical Invention: Psychology and Aesthetics 85 17. The Circle Theorem and an Infinite- Dimensional Labyrinth 91 18. Mistake! 97 19.
    [Show full text]