The Proof Is in the Pudding a Look at the Changing Nature of Mathematical Proof

Total Page:16

File Type:pdf, Size:1020Kb

The Proof Is in the Pudding a Look at the Changing Nature of Mathematical Proof The Proof is in the Pudding A Look at the Changing Nature of Mathematical Proof Steven G. Krantz July 25, 2007 To Jerry Lyons, mentor and friend. Table of Contents Preface ix 0 What is a Proof and Why? 3 0.1 What is a Mathematician? . 4 0.2 The Concept of Proof . 7 0.3 The Foundations of Logic . 14 0.3.1 The Law of the Excluded Middle . 16 0.3.2 Modus Ponendo Ponens and Friends . 17 0.4 What Does a Proof Consist Of? . 21 0.5 The Purpose of Proof . 22 0.6 The Logical Basis for Mathematics . 27 0.7 The Experimental Nature of Mathematics . 29 0.8 The Role of Conjectures . 30 0.8.1 Applied Mathematics . 32 0.9 Mathematical Uncertainty . 36 0.10 The Publication of Mathematics . 40 0.11 Closing Thoughts . 42 1 The Ancients 45 1.1 Eudoxus and the Concept of Theorem . 46 1.2 Euclid the Geometer . 47 1.2.1 Euclid the Number Theorist . 51 1.3 Pythagoras . 53 2 The Middle Ages and Calculation 59 2.1 The Arabs and Algebra . 60 2.2 The Development of Algebra . 60 iii iv 2.2.1 Al-Khwarizmi and the Basics of Algebra . 60 2.2.2 The Life of Al-Khwarizmi . 62 2.2.3 The Ideas of Al-Khwarizmi . 66 2.2.4 Concluding Thoughts about the Arabs . 70 2.3 Investigations of Zero . 71 2.4 The Idea of Infinity . 73 3 The Dawn of the Modern Age 75 3.1 Euler and the Profundity of Intuition . 76 3.2 Dirichlet and Heuristics . 77 3.3 The Pigeonhole Principle . 81 3.4 The Golden Age of the Nineteenth Century . 82 4 Hilbert and the Twentieth Century 85 4.1DavidHilbert........................... 86 4.2 Birkhoff, Wiener, and American Mathematics . 87 4.3 L. E. J. Brouwer and Proof by Contradiction . 96 4.4 The Generalized Ham-Sandwich Theorem . 107 4.4.1 Classical Ham Sandwiches . 107 4.4.2 Generalized Ham Sandwiches . 109 4.5 Much Ado About Proofs by Contradiction . 111 4.6 Errett Bishop and Constructive Analysis . 116 4.7 Nicolas Bourbaki . 117 4.8 Perplexities and Paradoxes . 129 4.8.1 Bertrand’s Paradox . 130 4.8.2 The Banach-Tarski Paradox . 134 4.8.3 The Monty Hall Problem . 136 5 The Four-Color Theorem 141 5.1 Humble Beginnings . 142 6 Computer-Generated Proofs 153 6.1 A Brief History of Computing . 154 6.2 The Difference Between Mathematics and Computer Science . 162 6.3 How the Computer Generates a Proof . 163 6.4 How the Computer Generates a Proof . 166 v 7 The Computer as a Mathematical Aid 171 7.1 Geometer’s Sketchpad . 172 7.2 Mathematica, Maple, and MatLab . 172 7.3 Numerical Analysis . 175 7.4 Computer Imaging and Proofs . 176 7.5 Mathematical Communication . 178 8 The Sociology of Mathematical Proof 185 8.1 The Classification of the Finite, Simple groups . 186 8.2 de Branges and the Bieberbach Conjecture . 193 8.3 Wu-Yi Hsiang and Kepler Sphere-Packing . 195 8.4 Thurston’s Geometrization Program . 201 8.5 Grisha Perelman and the Poincar´eConjecture . 209 9 A Legacy of Elusive Proofs 223 9.1 The Riemann Hypothesis . 224 9.2 The Goldbach Conjecture . 229 9.3 The Twin-Prime Conjecture . 233 9.4 Stephen Wolfram and A New Kind of Science .........234 9.5 Benoit Mandelbrot and Fractals . 239 9.6 The P/NP Problem.......................241 9.6.1 The Complexity of a Problem . 242 9.6.2 Comparing Polynomial and Exponential Complexity . 243 9.6.3 Polynomial Complexity . 244 9.6.4 Assertions that Can Be Verified in Polynomial Time . 245 9.6.5 Nondeterministic Turing Machines . 246 9.6.6 Foundations of NP-Completeness . 246 9.6.7 Polynomial Equivalence . 247 9.6.8 Definition of NP-Completeness . 247 9.6.9 Intractable Problems and NP-Complete Problems . 247 9.6.10 Examples of NP-Complete Problems . 247 9.7 Andrew Wiles and Fermat’s Last Theorem . 249 9.8 The Elusive Infinitesimal . 257 9.9 A Miscellany of Misunderstood Proofs . 259 9.9.1 Frustration and Misunderstanding . 261 vi 10 “The Death of Proof?” 267 10.1 Horgan’s Thesis . 268 10.2 Will “Proof” Remain the Benchmark? . 271 11 Methods of Mathematical Proof 273 11.1 Direct Proof . 274 11.2 Proof by Contradiction . 279 11.3 Proof by Induction . 282 12 Closing Thoughts 287 12.1 Why Proofs are Important . 288 12.2 Why Proof Must Evolve . 290 12.3 What Will Be Considered a Proof in 100 Years? . 292 References 295 viii Preface The title of this book is not entirely frivolous. There are many who will claim that the correct aphorism is “The proof of the pudding is in the eat- ing.” That it makes no sense to say, “The proof is in the pudding.” Yet people say it all the time, and the intended meaning is always clear. So it is with mathematical proof. A proof in mathematics is a psychological device for convincing some person, or some audience, that a certain mathematical assertion is true. The structure, and the language used, in formulating that proof will be a product of the person creating it; but it also must be tailored to the audience that will be receiving it and evaluating it. Thus there is no “unique” or “right” or “best” proof of any given result. A proof is part of a situational ethic. Situations change, mathematical values and standards develop and evolve, and thus the very way that we do mathematics will alter and grow. This is a book about the changing and growing nature of mathemati- cal proof. In the earliest days of mathematics, “truths” were established heuristically and/or empirically. There was a heavy emphasis on calculation. There was almost no theory, and there was little in the way of mathematical notation as we know it today. Those who wanted to consider mathemat- ical questions were thereby hindered: they had difficulty expressing their thoughts. They had particular trouble formulating general statements about mathematical ideas. Thus it was virtually impossible that they could state theorems and prove them. Although there are some indications of proofs even on ancient Babylo- nian tablets from 1000 B.C.E., it seems that it is in ancient Greece that we find the identifiable provenance of the concept of proof. The earliest math- ematical tablets contained numbers and elementary calculations. Because ix x of the paucity of texts that have survived, we do not know how it came about that someone decided that some of these mathematical procedures required logical justification. And we really do not know how the formal con- cept of proof evolved. The Republic of Plato contains a clear articulation of the proof concept. The Physics of Aristotle not only discusses proofs, but treats minute distinctions of proof methodology (see our Chapter 11). Many other of the ancient Greeks, including Eudoxus, Theaetetus, Thales, Euclid, and Pythagoras, either used proofs or referred to proofs. Protagoras was a sophist, whose work was recognized by Plato. His Antilogies were tightly knit logical arguments that could be thought of as the germs of proofs. But it must be acknowledged that Euclid was the first to systematically use precise definitions, axioms, and strict rules of logic. And to systemat- ically prove every statement (i.e., every theorem). Euclid’s formalism, and his methodology, has become the model—even to the present day—for es- tablishing mathematical facts. What is interesting is that a mathematical statement of fact is a free- standing entity with intrinsic merit and value. But a proof is a device of communication. The creator or discoverer of this new mathematical result wants others to believe it and accept it. In the physical sciences—chemistry, biology, or physics for example—the method for achieving this end is the re- producible experiment.1 For the mathematician, the reproducible experiment is a proof that others can read and understand and validate. Thus a “proof” can, in principle, take many different forms. To be ef- fective, it will have to depend on the language, training, and values of the “receiver” of the proof. A calculus student has little experience with rigor and formalism; thus a “proof” for a calculus student will take one form. A professional mathematician will have a different set of values and experiences, and certainly different training; so a proof for the mathematician will take a different form. In today’s world there is considerable discussion—among mathematicians—about what constitutes a proof. And for physicists, who are our intellectual cousins, matters are even more confused. There are those workers in physics (such as Arthur Jaffe of Harvard, Charles Fefferman of Princeton, Ed Witten of the Institute for Advanced Study, Frank Wilczek of MIT, and Roger Penrose of Oxford) who believe that physical concepts 1More precisely, it is the reproducible experiment with control. For the careful scientist compares the results of his/her experiment with some standard or norm. That is the means of evaluating the result. xi should be derived from first principles, just like theorems. There are other physicists—probably in the majority—who reject such a theoretical approach and instead insist that physics is an empirical mode of discourse. These two camps are in a protracted and never-ending battle over the turf of their sub- ject. Roger Penrose’s new book The Road to Reality: A Complete Guide to the Laws of the Universe, and the vehement reviews of it that have appeared, is but one symptom of the ongoing battle.
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • R Mathematics Esearch Eports
    Mathematics r research reports M r Boris Hasselblatt, Svetlana Katok, Michele Benzi, Dmitry Burago, Alessandra Celletti, Tobias Holck Colding, Brian Conrey, Josselin Garnier, Timothy Gowers, Robert Griess, Linus Kramer, Barry Mazur, Walter Neumann, Alexander Olshanskii, Christopher Sogge, Benjamin Sudakov, Hugh Woodin, Yuri Zarhin, Tamar Ziegler Editorial Volume 1 (2020), p. 1-3. <http://mrr.centre-mersenne.org/item/MRR_2020__1__1_0> © The journal and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Mathematics Research Reports is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Mathema tics research reports Volume 1 (2020), 1–3 Editorial This is the inaugural volume of Mathematics Research Reports, a journal owned by mathematicians, and dedicated to the principles of fair open access and academic self- determination. Articles in Mathematics Research Reports are freely available for a world-wide audi- ence, with no author publication charges (diamond open access) but high production value, thanks to financial support from the Anatole Katok Center for Dynamical Sys- tems and Geometry at the Pennsylvania State University and to the infrastructure of the Centre Mersenne. The articles in MRR are research announcements of significant ad- vances in all branches of mathematics, short complete papers of original research (up to about 15 journal pages), and review articles (up to about 30 journal pages). They communicate their contents to a broad mathematical audience and should meet high standards for mathematical content and clarity. The entire Editorial Board approves the acceptance of any paper for publication, and appointments to the board are made by the board itself.
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Interviewed by T. Christine Stevens)
    KENNETH A. ROSS JANUARY 8, 2011 AND JANUARY 5, 2012 (Interviewed by T. Christine Stevens) How did you get involved in the MAA? As a good citizen of the mathematical community, I was a member of MAA from the beginning of my career. But I worked in an “AMS culture,” so I wasn’t actively involved in the MAA. As of January, 1983, I had never served on an MAA committee. But I had been Associate Secretary of the AMS from 1971 to 1981, and thus Len Gillman (who was MAA Treasurer at the time) asked me to be MAA Secretary. There was a strong contrast between the cultures of the AMS and the MAA, and my first two years were very hard. Did you receive mentoring in the MAA at the early stages of your career? From whom? As a graduate student at the University of Washington, I hadn’t even been aware that the department chairman, Carl Allendoerfer, was serving at the time as MAA President. My first mentor in the MAA was Len Gillman, who got me involved with the MAA. Being Secretary and Treasurer, respectively, we consulted a lot, and he was the one who helped me learn the MAA culture. One confession: At that time, approvals for new unbudgeted expenses under $500 were handled by the Secretary, the Treasurer and the Executive Director, Al Wilcox. The requests usually came to me first. Since Len was consistently tough, and Al was a push-over, I would first ask the one whose answer would agree with mine, and then with a 2-0 vote, I didn’t have to even bother the other one.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • [The PROOF of FERMAT's LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] the World's Most Famous Math Problem the World's Most Famous Math Problem
    0Eft- [The PROOF of FERMAT'S LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] The World's Most Famous Math Problem The World's Most Famous Math Problem [ THE PROOF OF FERMAT'S LAST THEOREM AND OTHER MATHEMATICAL MYSTERIES I Marilyn vos Savant ST. MARTIN'S PRESS NEW YORK For permission to reprint copyrighted material, grateful acknowledgement is made to the following sources: The American Association for the Advancement of Science: Excerpts from Science, Volume 261, July 2, 1993, C 1993 by the AAAS. Reprinted by permission. Birkhauser Boston: Excerpts from The Mathematical Experience by Philip J. Davis and Reuben Hersh © 1981 Birkhauser Boston. Reprinted by permission of Birkhau- ser Boston and the authors. The Chronicleof Higher Education: Excerpts from The Chronicle of Higher Education, July 7, 1993, C) 1993 Chronicle of HigherEducation. Reprinted by permission. The New York Times: Excerpts from The New York Times, June 24, 1993, X) 1993 The New York Times. Reprinted by permission. Excerpts from The New York Times, June 29, 1993, © 1993 The New York Times. Reprinted by permission. Cody Pfanstieh/ The poem on the subject of Fermat's last theorem is reprinted cour- tesy of Cody Pfanstiehl. Karl Rubin, Ph.D.: The sketch of Dr. Wiles's proof of Fermat's Last Theorem in- cluded in the Appendix is reprinted courtesy of Karl Rubin, Ph.D. Wesley Salmon, Ph.D.: Excerpts from Zeno's Paradoxes by Wesley Salmon, editor © 1970. Reprinted by permission of the editor. Scientific American: Excerpts from "Turing Machines," by John E. Hopcroft, Scientific American, May 1984, (D 1984 Scientific American, Inc.
    [Show full text]
  • Books for Complex Analysis
    Books for complex analysis August 4, 2006 • Complex Analysis, Lars Ahlfors Product Details: ISBN: 0070006571 Format: Hardcover, 336pp Pub. Date: January 1979 Publisher: McGraw-Hill Science/Engineering/Math Edition Description: 3d ed $167.75 (all- time classic, cannot be a complex analyst without it, not easy for beginners) • Functions of One Complex Variable I (Graduate Texts in Mathematics Series #11) John B. Conway Product Details: ISBN: 0387903283 Format: Hardcover, 317pp Pub. Date: January 1978 Publisher: Springer-Verlag New York, LLC Edition Number: 2 $59.95 (another classic book for a complex analysis course) • Theory of Functions Edward Charles Titchmarsh ISBN: 0198533497 Format: Paperback, 464pp Pub. Date: May 1976 Publisher: Oxford University Press, USA Edition Description: REV Edition Number: 2 $98.00 (Chapters 1-8) • Complex Analysis (Princeton Lectures in Analysis Series Vol. II) Elias M. Stein, Rami Shakarchi Product Details: ISBN: 0691113858 Format: Hardcover, 400pp Pub. Date: May 2003 Pub- lisher: Princeton University Press $52.50 (part of a series of books in analysis, modern with nice applications) • Real and Complex Analysis Walter Rudin ISBN: 0070542341 Format: Hardcover, 480pp Pub. Date: May 1986 Publisher: McGraw- Hill Science/Engineering/Math Edition Description: 3rd ed Edition Number: 3 $167.75 (only Chapters 10-16, exercises are hard, written concisely) • Complex Variables and Applications James Ward Brown, Ruel V. Churchill, Product Details: ISBN: 0072872527 Format: Hardcover, 480pp Pub. Date: February 2003 Publisher: McGraw-Hill Companies, The Edition Number: 7 $149.75 (mostly undergraduate book, but Appendix 2 is a nice table of conformal mappings) • Elementary Theory of Analytic Functions of One or Several Complex Variables Henri Cartan Product Details: ISBN: 0486685438 Format: Paperback, 228pp Pub.
    [Show full text]
  • Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES in APPLIED MATHEMATICS
    Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GARRETT BIRKHOFF, The Numerical Solution of Elliptic Equations D. V. LINDLEY, Bayesian Statistics, A Review R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR, Some Limit Theorems in Statistics PATRICK BILLINGSLEY, Weak Convergence of Measures: Applications in Probability J. L. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems ROGER PENROSE, Techniques of Differential Topology in Relativity HERMAN CHERNOFF, Sequential Analysis and Optimal Design J. DURBIN, Distribution Theory for Tests Based on the Sample Distribution Function SOL I. RUBINOW, Mathematical Problems in the Biological Sciences P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG, Cardinal Spline Interpolation IVAN SINGER, The Theory of Best Approximation and Functional Analysis WERNER C. RHEINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS F. WEINBERGER, Variational Methods for Eigenvalue Approximation R. TYRRELL ROCKAFELLAR, Conjugate Duality and Optimization SIR JAMES LIGHTHILL, Mathematical Biofluiddynamics GERARD SALTON, Theory of Indexing CATHLEEN S. MORAWETZ, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RICHARD ASKEY, Orthogonal Polynomials and Special Functions L. E. PAYNE, Improperly Posed Problems in Partial Differential Equations S. ROSEN, Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERT B.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Reflection Positivity
    Mathematisches Forschungsinstitut Oberwolfach Report No. 55/2017 DOI: 10.4171/OWR/2017/55 Reflection Positivity Organised by Arthur Jaffe, Harvard Karl-Hermann Neeb, Erlangen Gestur Olafsson, Baton Rouge Benjamin Schlein, Z¨urich 26 November – 2 December 2017 Abstract. The main theme of the workshop was reflection positivity and its occurences in various areas of mathematics and physics, such as Representa- tion Theory, Quantum Field Theory, Noncommutative Geometry, Dynamical Systems, Analysis and Statistical Mechanics. Accordingly, the program was intrinsically interdisciplinary and included talks covering different aspects of reflection positivity. Mathematics Subject Classification (2010): 17B10, 22E65, 22E70, 81T08. Introduction by the Organisers The workshop on Reflection Positivity was organized by Arthur Jaffe (Cambridge, MA), Karl-Hermann Neeb (Erlangen), Gestur Olafsson´ (Baton Rouge) and Ben- jamin Schlein (Z¨urich) during the week November 27 to December 1, 2017. The meeting was attended by 53 participants from all over the world. It was organized around 24 lectures each of 50 minutes duration representing major recent advances or introducing to a specific aspect or application of reflection positivity. The meeting was exciting and highly successful. The quality of the lectures was outstanding. The exceptional atmosphere of the Oberwolfach Institute provided the optimal environment for bringing people from different areas together and to create an atmosphere of scientific interaction and cross-fertilization. In particular, people from different subcommunities exchanged ideas and this lead to new col- laborations that will probably stimulate progress in unexpected directions. 3264 Oberwolfach Report 55/2017 Reflection positivity (RP) emerged in the early 1970s in the work of Osterwalder and Schrader as one of their axioms for constructive quantum field theory ensuring the equivalence of their euclidean setup with Wightman fields.
    [Show full text]
  • Herman Heine Goldstine
    Herman Heine Goldstine Born September 13, 1913, Chicago, Ill.; Army representative to the ENIAC Project, who later worked with John von Neumann on the logical design of the JAS computer which became the prototype for many early computers-ILLIAC, JOHNNIAC, MANIAC author of The Computer from Pascal to von Neumann, one of the earliest textbooks on the history of computing. Education: BS, mathematics, University of Chicago, 1933; MS, mathematics, University of Chicago, 1934; PhD, mathematics, University of Chicago, 1936. Professional Experience: University of Chicago: research assistant, 1936-1937, instructor, 1937-1939; assistant professor, University of Michigan, 1939-1941; US Army, Ballistic Research Laboratory, Aberdeen, Md., 1941-1946; Institute for Advanced Study, Princeton University, 1946-1957; IBM: director, Mathematics Sciences Department, 1958-1965, IBM fellow, 1969. Honors and Awards: IEEE Computer Society Pioneer Award, 1980; National Medal of Science, 1985; member, Information Processing Hall of Fame, Infornart, Dallas, Texas, 1985. Herman H. Goldstine began his scientific career as a mathematician and had a life-long interest in the interaction of mathematical ideas and technology. He received his PhD in mathematics from the University of Chicago in 1936 and was an assistant professor at the University of Michigan when he entered the Army in 1941. After participating in the development of the first electronic computer (ENIAC), he left the Army in 1945, and from 1946 to 1957 he was a member of the Institute for Advanced Study (IAS), where he collaborated with John von Neumann in a series of scientific papers on subjects related to their work on the Institute computer. In 1958 he joined IBM Corporation as a member of the research planning staff.
    [Show full text]
  • Ground and Explanation in Mathematics
    volume 19, no. 33 ncreased attention has recently been paid to the fact that in math- august 2019 ematical practice, certain mathematical proofs but not others are I recognized as explaining why the theorems they prove obtain (Mancosu 2008; Lange 2010, 2015a, 2016; Pincock 2015). Such “math- ematical explanation” is presumably not a variety of causal explana- tion. In addition, the role of metaphysical grounding as underwriting a variety of explanations has also recently received increased attention Ground and Explanation (Correia and Schnieder 2012; Fine 2001, 2012; Rosen 2010; Schaffer 2016). Accordingly, it is natural to wonder whether mathematical ex- planation is a variety of grounding explanation. This paper will offer several arguments that it is not. in Mathematics One obstacle facing these arguments is that there is currently no widely accepted account of either mathematical explanation or grounding. In the case of mathematical explanation, I will try to avoid this obstacle by appealing to examples of proofs that mathematicians themselves have characterized as explanatory (or as non-explanatory). I will offer many examples to avoid making my argument too dependent on any single one of them. I will also try to motivate these characterizations of various proofs as (non-) explanatory by proposing an account of what makes a proof explanatory. In the case of grounding, I will try to stick with features of grounding that are relatively uncontroversial among grounding theorists. But I will also Marc Lange look briefly at how some of my arguments would fare under alternative views of grounding. I hope at least to reveal something about what University of North Carolina at Chapel Hill grounding would have to look like in order for a theorem’s grounds to mathematically explain why that theorem obtains.
    [Show full text]