Twenty-Five Years with Nicolas Bourbaki, 1949-1973

Total Page:16

File Type:pdf, Size:1020Kb

Twenty-Five Years with Nicolas Bourbaki, 1949-1973 Twenty-Five Years with Nicolas Bourbaki, 1949–1973 Armand Borel he choice of dates is dictated by per- To set the stage, I shall briefly touch upon the sonal circumstances: they roughly bound first fifteen years of Bourbaki. They are fairly well the period in which I had inside knowl- documented2, and I can be brief. edge of the work of Bourbaki, first In the early thirties the situation of mathemat- through informal contacts with several ics in France at the university and research levels, T the only ones of concern here, was highly unsat- members, then as a member for twenty years, until the mandatory retirement at fifty. isfactory. World War I had essentially wiped out one Being based largely on personal recollections, generation. The upcoming young mathematicians my account is frankly subjective. Of course, I had to rely for guidance on the previous one, in- checked my memories against the available docu- cluding the main and illustrious protagonists of the mentation, but the latter is limited in some ways: so-called 1900 school, with strong emphasis on not much of the discussions about orientation and analysis. Little information was available about current developments abroad, in particular about general goals has been recorded.1 Another mem- the flourishing German school (Göttingen, Ham- ber might present a different picture. burg, Berlin), as some young French mathemati- cians (J. Herbrand, C. Chevalley, A. Weil, J. Leray) Armand Borel is professor emeritus at the School of Math- were discovering during visits to those centers.3 ematics, Institute for Advanced Study, Princeton, NJ. In 1934 A. Weil and H. Cartan were Maîtres de This article is an outgrowth of a lecture given at the Uni- Conférences (the equivalent of assistant professors) versity of Bochum, Germany, October 1995, in a Collo- quium in honor of R. Remmert, and at the International at the University of Strasbourg. One main duty Center for Theoretical Physics, Trieste, Italy, September was, of course, the teaching of differential and in- 1996. With permission of the author, it is being published tegral calculus. The standard text was the Traité concurrently in the Notices and in the Mitteilungen der d’Analyse of E. Goursat, which they found want- Deutsche Mathematiker-Vereinigung. ing in many ways. Cartan was frequently bugging 1The Archives of Bourbaki at the École Normale Weil with questions on how to present this mate- Supérieure, Paris, contain reports, surveys, successive rial, so that at some point, to get it over with once drafts or counterdrafts of the chapters, remarks on those and for all, Weil suggested they write themselves resulting from discussions, and proceedings of the Con- gresses, called “Tribus”. Those provide mainly a record 2 of plans, decisions, commitments for future drafts, as well See [2, 3, 6, 7, 8, 14]. as jokes, sometimes poems. 3For this, see pp. 134–136 of [8]. MARCH 1998 NOTICES OF THE AMS 373 a new Traité d’Analyse. This suggestion was spread ous text in the same book or to an earlier book (in around, and soon a group of about ten math- the given ordering). The title “Éléments de Math- ematicians began to meet regularly to plan this trea- ématique” was chosen in 1938. It is worth noting tise. It was soon decided that the work would be that they chose “Mathématique” rather than the collective, without any acknowledgment of indi- much more usual “Mathématiques”. The absence vidual contributions. In summer 1935 the pen of the “s” was of course quite intentional, one way name Nicolas Bourbaki was chosen.4 for Bourbaki to signal its belief in the unity of The membership varied over the years; some mathematics. people in the first group dropped out quickly, oth- The first volumes to appear were the Fascicle of ers were added, and later there was a regular Results on Set Theory (1939) and then, in the for- process of additions and retirements. I do not in- ties, Topology and three volumes of Algebra. tend to give a detailed account. At this point let At that time, as a student and later assistant at me simply mention that the true “founding fa- the E.T.H. (Swiss Federal Institute of Technology) thers”, those who shaped Bourbaki and gave it in Zurich, I read them and learned from them, es- much of their time and thoughts until they re- pecially from Multilinear Algebra, for which there tired, are: was no equivalent anywhere, but with some reser- Henri Cartan vations. I was rather put off by the very dry style, Claude Chevalley without any concession to the reader, the appar- Jean Delsarte ent striving for the utmost generality, the inflexi- Jean Dieudonné ble system of internal references and the total ab- André Weil sence of outside ones (except in Historical Notes). For many, this style of exposition represented an born respectively in 1904, 1909, 1903, 1906, 1906— alarming tendency in mathematics, towards gen- all former students at the École Normale Supérieure erality for its own sake, away from specific prob- in Paris.5 lems. Among those critics was H. Weyl, whose A first question to settle was how to handle opinion I knew indirectly through his old friend and references to background material. Most existing former colleague M. Plancherel, who concurred, books were found unsatisfactory. Even B. v.d. Waer- at a time I was the latter’s assistant. den’s Moderne Algebra, which had made a deep im- In fall 1949 I went to Paris, having received a fel- pression, did not seem well suited to their needs lowship at the C.N.R.S. (Centre National de la (besides being in German). Moreover, they wanted Recherche Scientifique), benefiting from an ex- to adopt a more precise, rigorous style of exposi- change convention just concluded between the tion than had been traditionally used in France, so C.N.R.S. and the E.T.H. I quickly got acquainted with they decided to start from scratch and, after many some of the senior members (H. Cartan, discussions, divided this basic material into six J. Dieudonné, L. Schwartz) and, more usefully for “books”, each consisting possibly of several vol- informal contacts, with some of the younger ones, umes, namely: notably Roger Godement, Pierre Samuel, Jacques I Set Theory Dixmier, and, most importantly, Jean-Pierre Serre, II Algebra the beginning of intense mathematical discussions III Topology and a close friendship. Of course, I also attended IV Functions of One Real Variable the Bourbaki Seminar, which met three times a V Topological Vector Spaces year, offering each time six lectures on recent de- VI Integration velopments. These books were to be linearly ordered: refer- Those first encounters quickly changed my vi- ences at a given spot could only be to the previ- sion of Bourbaki. All these people—the elder ones, of course, but also the younger ones—were 4See [3] for the origin of the name. very broad in their outlook. They knew so much and knew it so well. They shared an efficient way 5They all contributed in an essential way. For Cartan, Chevalley, Dieudonné, and Weil I could witness it at first- to digest mathematics, to go to the essential hand, but not for Delsarte, who was not really active any- points, and reformulate the math in a more com- more when I came on board. But his importance has been prehensive and conceptual way. Even when dis- repeatedly stressed to me by Weil in conversations. See also cussing a topic more familiar to me than to them, [14] and comments by Cartan, Dieudonné, Schwartz in [3, their sharp questions often gave me the impres- pp. 81–83]. In particular, he played an essential role in sion I had not really thought it through. That transforming into a coherent group, and maintaining it methodology was also apparent in some of the lec- so, a collection of strong, some quite temperamental, in- tures at the Bourbaki seminar, such as Weil’s on dividuals. Besides, obviously, Book IV, Functions of one real theta functions (Exp. 16, 1949) or Schwartz’s on variable, owes much to him. Some other early members, notably Szolem Mandelbrojt and René de Possel, also con- Kodaira’s big Annals paper on harmonic integrals tributed substantially to the work of the group in its ini- (Exp. 26, 1950). Of course, special problems were tial stages. not forgotten—in fact, were the bread and but- 374 NOTICES OF THE AMS VOLUME 45, NUMBER 3 ter of most discussions. The writing of the books The underlying thought was apparently that re- was obviously a different matter. ally new, groundbreaking ideas were more likely Later I was invited to attend (part of) a Bourbaki to arise from confrontation than from an orderly Congress and was totally bewildered. Those meet- discussion. When they did emerge, Bourbaki mem- ings (as a rule three per year: two of one week, one bers would say, “the spirit has blown” (“l’esprit a of about two) were private affairs, devoted to the soufflé”), and it is indeed a fact that it blew much books. A usual session would discuss a draft of more often after a “spirited” (or should I say some chapter or maybe a preliminary report on a stormy) discussion than after a quiet one. topic under consideration for inclusion, then or Other rules of operation also seemed to mini- later. It was read aloud line by line by a member, mize the possibility of a publication in a finite and anyone could at any time interrupt, comment, time: ask questions, or criticize. More often than not, this Only one draft was read at a given time, and “discussion” turned into a chaotic shouting match.
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Tōhoku Rick Jardine
    INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces.
    [Show full text]
  • Stable Real Cohomology of Arithmetic Groups
    ANNALES SCIENTIFIQUES DE L’É.N.S. ARMAND BOREL Stable real cohomology of arithmetic groups Annales scientifiques de l’É.N.S. 4e série, tome 7, no 2 (1974), p. 235-272 <http://www.numdam.org/item?id=ASENS_1974_4_7_2_235_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1974, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 46 serie, t. 7, 1974, p. 235 a 272. STABLE REAL COHOMOLOGY OF ARITHMETIC GROUPS BY ARMAND BOREL A Henri Cartan, a Poccasion de son 70® anniversaire Let r be an arithmetic subgroup of a semi-simple group G defined over the field of rational numbers Q. The real cohomology H* (T) of F may be identified with the coho- mology of the complex Q^ of r-invariant smooth differential forms on the symmetric space X of maximal compact subgroups of the group G (R) of real points of G. Let 1^ be the space of differential forms on X which are invariant under the identity component G (R)° of G (R). It is well-known to consist of closed (in fact harmonic) forms, whence a natural homomorphism^* : 1^ —> H* (T).
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Algebraic D-Modules and Representation Theory Of
    Contemporary Mathematics Volume 154, 1993 Algebraic -modules and Representation TheoryDof Semisimple Lie Groups Dragan Miliˇci´c Abstract. This expository paper represents an introduction to some aspects of the current research in representation theory of semisimple Lie groups. In particular, we discuss the theory of “localization” of modules over the envelop- ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph A. Wolf and the author on the localization of Harish-Chandra modules [7], [8], [13], [17], [18]. These results can be viewed as a vast generalization of the classical theorem of Armand Borel and Andr´e Weil on geometric realiza- tion of irreducible finite-dimensional representations of compact semisimple Lie groups [3]. 1. Introduction Let G0 be a connected semisimple Lie group with finite center. Fix a maximal compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the corresponding Cartan involution, i.e., σ is the involution of g such that k is the set of its fixed points. Let K be the complexification of K0. The group K has a natural structure of a complex reductive algebraic group. Let π be an admissible representation of G0 of finite length. Then, the submod- ule V of all K0-finite vectors in this representation is a finitely generated module over the enveloping algebra (g) of g, and also a direct sum of finite-dimensional U irreducible representations of K0.
    [Show full text]
  • Issue 118 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension.
    [Show full text]
  • Armand Borel (1923–2003), Volume 51, Number 5
    Armand Borel (1923–2003) James Arthur, Enrico Bombieri, Komaravolu Chandrasekharan, Friedrich Hirzebruch, Gopal Prasad, Jean-Pierre Serre, Tonny A. Springer, and Jacques Tits Citations within this article. Borel’s Collected Papers are [Œ], and his 17 books are referred to as [1] through [17]. These are all listed in a sidebar on page 501. An item like [Œ 23] is Borel paper number 23 in [Œ]. Ci- tations of work by people other than Borel are by letter combinations such as [Che], and the de- tails appear at the end of the article. their root systems. He spent the year 1949–50 in 1 Institute for Advanced Study, 1999. Paris, with a grant from the CNRS . A good choice Armand Borel (for us, as well as for him), Paris being the very spot where what Americans have called “French Topol- Jean-Pierre Serre ogy” was being created, with the courses from The Swiss mathematician Armand Borel died Leray at the Collège de France and the Cartan sem- August 11, 2003, in Princeton from a rapidly evolv- inar at the École Normale Supérieure. Borel was an ing cancer. Few foreign mathematicians had as active participant in the Cartan seminar while many connections with France. He was a student closely following Leray’s courses. He managed to of Leray, he took part in the Cartan seminar, and understand the famous “spectral sequence”, not an he published more than twenty papers in collabo- easy task, and he explained it to me so well that I ration with our colleagues Lichnerowicz and Tits, have not stopped using it since.
    [Show full text]
  • Cartan and Complex Analytic Geometry
    Cartan and Complex Analytic Geometry Jean-Pierre Demailly effort in France to recruit teachers, due to the much increased access of pupils and students to On the Mathematical Heritage of Henri higher education, along with a strong research ef- Cartan fort in technology and science. I remember quite Henri Cartan left us on August 13, 2008, at the well that my father had a book with a mysterious age of 104. His influence on generations of math- title: Théorie Élémentaire des Fonctions Analytiques ematicians worldwide has been considerable. In d’une ou Plusieurs Variables Complexes (Hermann, France especially, his role as a 4th edition from 1961) [Ca3], by Henri Cartan, professor at École Normale Su- which contained magical stuff such as contour périeure in Paris between 1940 integrals and residues. I could then, of course, and 1965 led him to supervise not understand much of it, but my father was the Ph.D. theses of Jean-Pierre quite absorbed with the book; I was equally im- Serre (Fields Medal 1954), René pressed by the photograph of Cartan on the cover Thom (Fields Medal 1958), and pages and by the style of the contents, which had many other prominent math- obvious similarity to the “New Math” we started ematicians such as Pierre Cart- being taught at school—namely set theory and ier, Jean Cerf, Adrien Douady, symbols like ∪, ∩, ∈, ⊂,... My father explained Roger Godement, Max Karoubi, to me that Henri Cartan was one of the leading and Jean-Louis Koszul. French mathematicians and that he was one of However, rather than rewrit- the founding members of the somewhat secre- ing history that is well known tive Bourbaki group, which had been the source to many people, I would like of inspiration for the new symbolism and for the here to share lesser known reform of education.
    [Show full text]
  • Lie Groups and Linear Algebraic Groups I. Complex and Real Groups Armand Borel
    Lie Groups and Linear Algebraic Groups I. Complex and Real Groups Armand Borel 1. Root systems x 1.1. Let V be a finite dimensional vector space over Q. A finite subset of V is a root system if it satisfies: RS 1. Φ is finite, consists of non-zero elements and spans V . RS 2. Given a Φ, there exists an automorphism ra of V preserving Φ 2 ra such that ra(a) = a and its fixed point set V has codimension 1. [Such a − transformation is unique, of order 2.] The Weyl group W (Φ) or W of Φ is the subgroup of GL(V ) generated by the ra (a Φ). It is finite. Fix a positive definite scalar product ( , ) on V invariant 2 under W . Then ra is the reflection to the hyperplane a. ? 1 RS 3. Given u; v V , let nu;v = 2(u; v) (v; v)− . We have na;b Z for all 2 · 2 a; b Φ. 2 1.2. Some properties. (a) If a and c a (c > 0) belong to Φ, then c = 1; 2. · The system Φ is reduced if only c = 1 occurs. (b) The reflection to the hyperplane a = 0 (for any a = 0) is given by 6 (1) ra(v) = v nv;aa − therefore if a; b Φ are linearly independent, and (a; b) > 0 (resp. (a; b) < 0), 2 then a b (resp. a + b) is a root. On the other hand, if (a; b) = 0, then either − a + b and a b are roots, or none of them is (in which case a and b are said to be − strongly orthogonal).
    [Show full text]
  • Prof. Alexander Grothendieck - the Math Genius! - 11-19-2014 by Gonit Sora - Gonit Sora
    Prof. Alexander Grothendieck - The math genius! - 11-19-2014 by Gonit Sora - Gonit Sora - https://gonitsora.com Prof. Alexander Grothendieck - The math genius! by Gonit Sora - Wednesday, November 19, 2014 https://gonitsora.com/prof-alexander-grothendieck-math-genius/ I was reading a math-related post in Facebook when suddenly the message icon in the top right corner of the facebook page turned red and the speakers of my system made a beep sound. It was a message from my friend, Manjil, asking me to write an obituary of the famous mathematician Alexander Grothendieck. I immediately replied "Yes of course!". Incidentally, the math-related post I mentioned in the first line was a news report on the recent death of the same math genius. I opened an extra tab on my browser and searched for more details about Prof. Grothendieck. And yes, I was shocked to see a huge bunch of info about him on various sites. So, I realised that writing about him is going to be tough! Ultimately I have come up with a brief write up on the life and works of Prof. Grothendieck. I, on behalf of GonitSora, dedicate this write up to the revolutionary mathematician Prof. Alexander Grothendieck. May his soul rest in peace! Alexander Grothendieck Prof. Grothendeick was a French mathematician and the leading figure in creating modern algebraic geometry. His research program vastly extended the scope of the field, incorporating major elements of commutative algebra, homological algebra, sheaf theory, and category theory into its foundations. This new perspective led to revolutionary advances across many areas of pure mathematics.
    [Show full text]
  • Mathematical Perspectives
    MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 4, October 2009, Pages 661–666 S 0273-0979(09)01264-6 Article electronically published on May 14, 2009 ANDREWEIL´ ARMAND BOREL The mathematician Andr´e Weil died in Princeton at the age of ninety-two, after a gradual decline in his physical, but not mental, capacities. In January 1999, a conference on his work and its influence took place at the Institute for Advanced AndreWeil´ 6 May 1906–6 August 1998 This article is from the Proceedings of the American Philosophical Society, vol. 145, no. 1, March 2001, pp. 108–114. Reprinted with permission. c 2009 American Mathematical Society 661 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 662 ARMAND BOREL Study, the poster of which gave this capsule description of him: A man of formidable intellectual power, moved by a global view and knowledge of mathematics, of its history and a strong belief in its unity, Andr´e Weil has profoundly influenced the course of mathe- matics by the breadth and depth of his publications, his correspon- dence and his leading contributions to the work of N. Bourbaki, a statement of which this text is basically just an elaboration. In attempting to give an impression of Weil’s work and thought processes, I shall have to navigate between the Charybdis of undefined mathematical jargon and the Scylla of vague, seemingly but not necessarily more understandable, statements. I hope the reader will bear with me! Andr´e Weil was born in Paris in a Jewish family, to an Alsatian physician and his Russian-born wife, of Austrian origin.
    [Show full text]
  • Armand Borel 1923–2003
    Armand Borel 1923–2003 A Biographical Memoir by Mark Goresky ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ARMAND BOREL May 21, 1923–August 11, 2003 Elected to the NAS, 1987 Armand Borel was a leading mathematician of the twen- tieth century. A native of Switzerland, he spent most of his professional life in Princeton, New Jersey, where he passed away after a short illness in 2003. Although he is primarily known as one of the chief archi- tects of the modern theory of linear algebraic groups and of arithmetic groups, Borel had an extraordinarily wide range of mathematical interests and influence. Perhaps more than any other mathematician in modern times, Borel elucidated and disseminated the work of others. family the Borel of Photo courtesy His books, conference proceedings, and journal publica- tions provide the document of record for many important mathematical developments during his lifetime. By Mark Goresky Mathematical objects and results bearing Borel’s name include Borel subgroups, Borel regulator, Borel construction, Borel equivariant cohomology, Borel-Serre compactification, Bailey- Borel compactification, Borel fixed point theorem, Borel-Moore homology, Borel-Weil theorem, Borel-de Siebenthal theorem, and Borel conjecture.1 Borel was awarded the Brouwer Medal (Dutch Mathematical Society), the Steele Prize (American Mathematical Society) and the Balzan Prize (Italian-Swiss International Balzan Foundation). He was a member of the National Academy of Sciences (USA), the American Academy of Arts and Sciences, the American Philosophical Society, the Finnish Academy of Sciences and Letters, the Academia Europa, and the French Academy of Sciences.1 1 Borel enjoyed pointing out, with some amusement, that he was not related to the famous Borel of “Borel sets." 2 ARMAND BOREL Switzerland and France Armand Borel was born in 1923 in the French-speaking city of La Chaux-de-Fonds in Switzerland.
    [Show full text]