Diversity of Insect Pollinators in Different Agricultural Crops and Wild Flowering Plants in Korea: Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Insect Pollinators in Different Agricultural Crops and Wild Flowering Plants in Korea: Literature Review Original Article 한국양봉학회지 제25권 제2호 (2010) Journal of Apiculture 30(3) : 191~201 (2015) Diversity of Insect Pollinators in Different Agricultural Crops and Wild Flowering Plants in Korea: Literature Review Sei-Woong Choi and Chuleui Jung1* Mokpo National University, Muan, Jeonnam, South Korea 1Andong National University, Andong, Kyungbuk, South Korea (Received 10 September 2015; Revised 25 September 2015; Accepted 28 September 2015) Abstract | Insect pollination is an important ecosystem process for increased agricultural crop yield as well as for enhancing ecosystem production. We analyzed insect pollinators visiting fruits and flowers in different orchards and wild fields across Korea during the last three decades, published in scientific journals in Korea. A total of 368 species in 115 families of 7 orders were recorded to serve as pollinators in 43 different agricultural crops and wild flowers. The most diverse insect pollinators were the species of Hymenoptera followed by Diptera and Coleoptera. The dominant insect pollinator was the honey bee (Apis melliferas) followed by Eristalis cerealis, Tetralonia nipponensis, Xylocopa appendiculata, Eristalis tenax, Helophilus virgatus and Artogeia rapae. Study methods employed for diversity of pollinators were mostly sweep netting, but trapping was mostly employed for bee diversity and direct observation for lepidopteran diversity. Bee diversity was higher in orchards while insect order level diversity was higher in wild plant pollinators, suggesting the important roles of wild flowers for conservation of insect pollinators. Key words: Apis melliferas, Eristalis cerealis, Tetralonia nipponensis, Xylocopa appendiculata, Eristalis tenax, Helophilus virgatus, Artogeia rapae INTRODUCTION diverse species of Hymenoptera (bees, solitary species, bumblebees, pollen wasps and ants), Diptera (bee flies, Animal-mediated pollination plays an important functi- houseflies, hoverflies), Lepidoptera (butterflies and moths), onal role in most terrestrial ecosystems and provides a key Coleoptera (flower beetles), and other insects. Although ecosystem service vital to the maintenance of both wild managed bee hives are increasing worldwide, insect and agricultural plant communities as most angiosperms pollinators are considered to be in a state of decline due to are pollen-limited and rely on animals for sexual reproduc- a range of recent and projected environmental changes, tion (Potts et al., 2010; Albrecht et al., 2012). A large such as habitat loss and climate change, with unknown proportion of the human diet depends directly or indirectly consequences for pollination service delivery (Potts et al., on animal pollination (Klein et al., 2007; Albrecht et al., 2010). 2012; Garibaldi et al., 2013). In Korea, Ko et al. (1977) first examined the diversity Insects are the primary animal-mediated pollinators of and frequency of insect pollinators visiting apple, pear and 80% of all plant species in Europe, including most fruits, peach in Seoul and Suwon and reported 26 insect species many vegetables and some biofuel crops and include in three orders and honey bee (Apis mellifera) was the most *Corresponding author. E-mail: [email protected] 191 192 Sei-Woong Choi and Chuleui Jung dominant species to visit fruits. Woo et al. (1986a, b) peer-reviewed scientific journals in Korea (Korean journal surveyed visiting insects to apple, pear and peach in 4 areas of Apiculture, Korean Journal of Environmental Ecology) across Korea and reported different insect diversity published since 1977. We recorded the diversity of insect depending on fruits: 12 families and 22 species of Hyme- pollinators and their visiting fruits and flowers. Fourteen noptera and 10 families and 17 species of Diptera visited papers were retrieved mostly from fruit crops and apple flowers; 13 families and 17 species of Hymenoptera horticultural crops (12) and wild plants (2), respectively and 10 families and 22 species of Diptera visited pear (Hong et al., 1989; Kang et al., 2003; Kang et al., 2009, flowers; and 13 families and 19 species of Hymenoptera Kim et al., 2005; Kim et al., 2009; Kim et al., 2012, 2013; and 9 families and 16 species of Diptera visited peach Ko et al., 1977; Kwon et al., 2011; Lee et al., 2000; Lee et flowers. Lee et al. (2000) reported 68 insect species in 27 al., 2007; Lee et al., 2008; Woo et al., 1986a, b). Fruit cr- families and 6 orders that visited apple flowers in Gyungs- ops include apple, pear, peach, persimmon and wild berry, angbuk-do province and the Hymenoptera comprised more horticultural crops include strawberry, tomato and than half (51.2%) of the total insects and honey bee was sunflower, while the wild plants include 30 wild flowers. the dominant pollinator. Kim and Hwang (2009) recorded Occurrence of each flower visiting insects on each crop insect pollinators visiting peach and pear in Jeonju, was marked as record. Different sampling methods were Jeollabuk-do province: 11 species in 6 families and 4 employed but we grouped those into direct observation, orders visiting peach and 17 species in 11 families and 5 sweep net collection and trapping with pollinator trap or orders visiting pear and identified Apis mellifera as the water pan trap. major insect pollinator. Recently Kim et al. (2012, 2013) reported insect pollinator diversity visiting flowers of Asteraceae, Labiatae and Umbelliferae. RESULTS We reviewed insect pollinators visiting fruits and flowers A total of 368 identified species in 115 families of 7 in different orchards and wild fields across Korea during orders were recorded to serve as pollinators in 43 different the last three decades. The purpose of the study was to see fruits and flowers in orchards and wild fields (Fig. 1, the pattern of diversity of insect pollinators and interactions Appendix 1 include all listed species including unidentified between insects and plants. We hope that this review can species). The most diverse insect pollinators were the be the baseline data to set up research plans on ecology and species of Hymenoptera (110 species, 373 records), conservation of insect pollinators in Korea. followed by Diptera (104 species, 219 records), Coleoptera (88 species, 111 records) and Lepidoptera (47 species, 97 MATERIALS AND METHODS records). The dominant insect pollinator was the honey bee (Apis mellifera, 34 records) followed by Eristalis cerealis We searched the literatures dealing with the diversity of (Diptera, 26 records), Tetralonia nipponensis (Hymen- insect pollinators in domesticated and wild plants in the optera, 12 records), Xylocopa appendiculata (Hymenopte- Table 1. Dominant flower visiting insect species ra, 12 records), Eristalis tenax (Diptera, 11 records), Helo- Species (Order) Records philus virgatus (Diptera, 11 records), and Artogeia rapae Apis mellifera (Hym) 34 (Lepidoptera, 10 records) (Table 1). Detailed lists were Eristalis cerealis (Dip) 26 provided with Appendix 1 and 2. The main insect poll- Tetralonia nipponensis (Hym) 12 inators are bees (Hymenoptera) since bees spend most of Xylocopa appendiculata (Hym) 12 their life in collecting pollen, a source of protein that they Eristalis tenax (Dip) 11 Helophilus virgatus (Dip) 11 feed to their developing offspring and nectar, a Artogeia rapae (Lep) 10 concentrated energy source (Aizen and Harder, 2009). Bombus ignitus (Hym) 9 Honey bee is the best known and widely managed Allograpta balteata (Dip) 9 pollinator. In addition there are hundreds of other species Diversity of Insect Pollinators in Different Agricultural Crops and Wild Flowering Plants in Korea: Literature Review 193 Flower visiting insects 350 Hymenoptera 300 Fruit tree Diptera 250 Coleoptera Horticultural crop 200 Lepidoptera Heteroptera 150 Wild plant Thysanoptera 100 Neuroptera Frequency of records 50 Homoptera 0 50 100 150 200 250 300 350 400 450 0 Records Species Families Diptera Hemiptera Lepidoptera ColeopteraHomoptera Neuroptera Fig. 1. Distribution of pollinating insect order in family, species HymenopteraThysanoptera (identified and unidentified species) and record levels from the literature review. Fig. 3. Frequency distribution of insect orders on different types of plants: fruit tree, horticultural crops and wild plants. Flower visitors 400 250 300 200 Observation Sweep net 150 200 Trapping 100 100 Frequency of records 50 0 0 Frequency of sampling method Pear Apple Peach Tomato PersimmonStrawberry Diptera HemipteraColeopteraHomoptera Neuroptera Rubus coreanusAngelica gigas Lepidoptera Erigeron annuus Agastache rugosa HymenopteraThysanoptera Eupatorium japonicum Fig. 4. Frequency distribution of sampling methods of each Fig. 2. Frequency distribution of flower visiting insects along flower visiting insect order. with different crops and wild plants. Plants with lower fr- equency were excluded. Pipiza, Sphaerophoria, and Syrphus, respectively. Droso- of bees, mostly solitary ground nesting species, that philidae have been associated with pollination of contribute some level of pollination services to crops and Genoplesium (Orchidaceae) in Australia (Bishop 1996; are very important in natural plant communities (Garibaldi Larson et al., 2001). In addition Drosophilidae and et al., 2013). Among bees, the diversity at the genus level sympatric Nitidulidae (Coleoptera) are known to vector showed that Andrena was the most diverse with more than yeasts between flowers of many Convolvulaceae, Hibiscus, 21 species, followed by 14 species of Lasioglossum, 8 and other plants that possess campanulate flowers in the Bombus,
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • An Annotated Checklist of Wisconsin Mordellidae (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 2003 An annotated checklist of Wisconsin Mordellidae (Coleoptera) Anneke E. Lisberg University of Wisconsin-Madison Daniel K. Young University of Wisconsin-Madison Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Lisberg, Anneke E. and Young, Daniel K., "An annotated checklist of Wisconsin Mordellidae (Coleoptera)" (2003). Insecta Mundi. 39. https://digitalcommons.unl.edu/insectamundi/39 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 17, No. 3-4, September-December, 2003 195 An annotated checklist of Wisconsin Mordellidae (Coleoptera) Anneke E. Lisberg and Daniel K. Young Department of Entomology University of Wisconsin-Madison 445 Russell Labs 1630 Linden Dr. Madison, WI 53706, U.S.A. Abstract: A three-year survey of Wisconsin Mordellidae (Coleoptera) encompassing a compilation of data from literature records and local collections as well as field work including trapping, hand-collecting, and rearing yielded 68 species comprising 14 genera in three tribes. Sixty-three species (92% of Wisconsin fauna) represent new state species records, not previously recorded from the state in the literature. Plant-associations and state- specific temporal and spatial distribution data for larvae and adults are noted as available. Distributional records suggest 16 additional species and one additional genus are likely to occur in Wisconsin.
    [Show full text]
  • Hymenoptera, Apidae: Bombus Latreille, 1802) of the Republic of Tyva, Eastern Siberia
    Евразиатский энтомол. журнал 13(3): 290–294 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2014 Contribution to the fauna of bumble bees (Hymenoptera, Apidae: Bombus Latreille, 1802) of the Republic of Tyva, Eastern Siberia Ê ôàóíå øìåëåé (Hymenoptera, Apidae: Bombus Latreille, 1802) Ðåñïóáëèêè Òûâà, Âîñòî÷íàÿ Ñèáèðü A.N. Kupianskaya, M.Yu. Proshchalykin, A.S. Lelej À.Í. Êóïÿíñêàÿ, Ì.Þ. Ïðîùàëûêèí, À.Ñ. Ëåëåé Institute of Biology and Soil Sciences, Far Eastern Branch of Russian Academy of Sciences, Prosp. 100-letiya Vladivostoka 159, Vladivostok 690022 Russia. E-mail: [email protected]; [email protected] Биолого-почвенный институт ДВО РАН, пр. 100-летия Владивостока 159, Владивосток 690022 Россия. Key words: Apoidea, Apiformes, Palaearctic region, biodiversity, new records. Ключевые слова: Apoidea, Apiformes, Палеарктика, биоразнообразие, новые находки. Abstract. An annotated list of 27 species of bumble bees [Tkalcù, 1967; Panfilov, 1982, 1984; Byvaltsev, 2011; collected in Republic of Tyva (Tuva) in 2013 is given. The Levchenko, 2012] were based on this paper only. list of the bumble bee species of Tuva is increased up to 33 Republic of Tyva (Tuva) borders northwestern species. Ten species, Bombus amurensis Radoszkowski, Mongolia and occupies the basin of the upper Yenisey B. barbutellus (Kirby), B. bohemicus Seidl, B. campestris River. The length of the republic territory from north to Dahlbom, B. cryptarum (Fabricius), B. distinguendus Moraw- itz, B. margreiteri Skorikov, B. pseudobaicalensis Vogt, south is 450 km, from west to east — 700 km, land area — B. sporadicus Nylander, and B. veteranus (Fabricius) are 170.427 sq. km. Its relief consists of two broad basins, the newly recorded from Tuva. Diversity of bumble bees in Tuva Tuva and Todzha, drained by two main tributaries of the and Siberia are discussed.
    [Show full text]
  • Coleoptera Tenebrionoidea) with Redescription of Falsopseudotomoxia Argyropleura (Franciscolo, 1942) N
    BOLL. SOC. ENTOMOL. ITAL., 145 (3): 103-115, ISSN 0373-3491 15 DICEMBRE 2013 Enrico ruZZiEr Taxonomic and faunistic notes on Italian Mordellidae (Coleoptera Tenebrionoidea) with redescription of Falsopseudotomoxia argyropleura (Franciscolo, 1942) n. comb. Riassunto: Note faunistiche e tassonomiche sui Mordellidi italiani con ridescrizione di Falsopseudotomoxia argyropleura (Franciscolo, 1942) n. comb. Nel presente lavoro sono forniti nuovi dati faunistici sui Mordellidae italiani ed è redatta una nuova checklist. Viene inoltre ridescritta Variimorda argyropleura e fornita una nuova combinazione tassonomica. Abstract: New faunistic records of italian Mordellidae and an updated checklist are given. Variimorda argyropleura is re-described and the species is assigned to the genus Falsopseudotomoxia. Key words: Coleoptera; Tenebrionoidea; Mordellidae; faunistic. iNTroduCTioN species whose status was in doubt. in this paper the Mordellidae is an extremely complex and ho- new status of Falsopseudotomoxia argyropleura mogeneous beetle family where a secure identifica- (Franciscolo, 1942) will be explained and an updated tion at species level is not possible without a check list of italian Mordellidae will be given. combination of genital morphology, external charac- ters (such as ridges on hind tibiae and tarsi, colour CHECK LisT oF iTALiAN MordELLidAE of the hairs on the elytra) and morphometric analysis. (* status not clear; [?] doubtful presence) in particular, genera such as Mordella (Linnaeus, ErPC: Enrico ruzzier Personal Collection, Mirano 1758) and Mordellistena (A. Costa, 1854) require at- (Venezia). tention due to the richness of sibling species (K. Er- CBFV: Centro Nazionale per lo studio e la Conservazione misch, 1954; 1956; 1963; 1965b; 1969; 1977), often della Biodiversità Forestale Bosco Fontana, Verona. sympatric. Therefore, faunistic research requires FAPC: Fernando Angelini Personal Collection, Francavilla careful and precise study of all material available.
    [Show full text]
  • Coleópteros Saproxílicos De Los Bosques De Montaña En El Norte De La Comunidad De Madrid
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Coleópteros Saproxílicos de los Bosques de Montaña en el Norte de la Comunidad de Madrid T e s i s D o c t o r a l Juan Jesús de la Rosa Maldonado Licenciado en Ciencias Ambientales 2014 Departamento de Producción Vegetal: Botánica y Protección Vegetal Escuela Técnica Superior de Ingenieros Agrónomos Coleópteros Saproxílicos de los Bosques de Montaña en el Norte de la Comunidad de Madrid Juan Jesús de la Rosa Maldonado Licenciado en Ciencias Ambientales Directores: D. Pedro del Estal Padillo, Doctor Ingeniero Agrónomo D. Marcos Méndez Iglesias, Doctor en Biología 2014 Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid el día de de 2014. Presidente D. Vocal D. Vocal D. Vocal D. Secretario D. Suplente D. Suplente D. Realizada la lectura y defensa de la Tesis el día de de 2014 en Madrid, en la Escuela Técnica Superior de Ingenieros Agrónomos. Calificación: El Presidente Los Vocales El Secretario AGRADECIMIENTOS A Ángel Quirós, Diego Marín Armijos, Isabel López, Marga López, José Luis Gómez Grande, María José Morales, Alba López, Jorge Martínez Huelves, Miguel Corra, Adriana García, Natalia Rojas, Rafa Castro, Ana Busto, Enrique Gorroño y resto de amigos que puntualmente colaboraron en los trabajos de campo o de gabinete. A la Guardería Forestal de la comarca de Buitrago de Lozoya, por su permanente apoyo logístico. A los especialistas en taxonomía que participaron en la identificación del material recolectado, pues sin su asistencia hubiera sido mucho más difícil finalizar este trabajo.
    [Show full text]
  • Species List For: Valley View Glades NA 418 Species
    Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var.
    [Show full text]
  • Hymenoptera: Apidae) in Hungary, Central Europe
    Biodiversity and Conservation (2005) 14:2437–2446 Ó Springer 2005 DOI 10.1007/s10531-004-0152-y Assessing the threatened status of bumble bee species (Hymenoptera: Apidae) in Hungary, Central Europe MIKLO´SSA´ROSPATAKI*, JUDIT NOVA´K and VIKTO´RIA MOLNA´R Department of Zoology and Ecology, Szent Istva´n University, H-2103 Go¨do¨ll, Pa´ter K. u. 1., Hungary; *Author for correspondence: (e-mail: [email protected]; phone: +36-28-522-085, fax: +36-28-410-804 Received 11 November 2003; accepted in revised form 5 April 2004 Key words: Bombus, Endangered and vulnerable species, IUCN Red List categories, Species con- servation Abstract. Decline in the populations of bumble bees and other pollinators stress the need for more knowledge about their conservation status. Only one of the 25 bumble bee species present in Hungary is included in the Hungarian Red List. We estimated the endangerment of the Hungarian bumble bee (Bombus Latr.) species using the available occurrence data from the last 50 years of the 20th century. Four of the 25 species were data deficient or extinct from Hungary. About 60% of species were considered rare or moderately rare. Changes in distribution and occurrence frequency indicated that 10 of the 21 native species showed a declining trend, while only three species in- creased in frequency of occurrence. According to the IUCN Red List categories, seven species (33% of the native fauna) should be labelled as critically endangered (CR) and 3 (14%) as endangered (EN). Our results stress an urgent need of protection plans for bumble bees in Hungary, and further underlines the validity of concern over bumble bees all over Europe.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • The Type Material of Swedish Bees (Hymenoptera, Apoidea) I
    Ent. Tidskr. 128 (2007) Type material of Swedish bees The type material of Swedish bees (Hymenoptera, Apoidea) I. L. ANDERS NILSSON Nilsson, L.A.: The type material of Swedish bees (Hymenoptera, Apoidea) I. [Typmaterial av svenska bin (Hymenoptera, Apoidea) I.] – Entomologisk Tidskrift 128 (4): 167-181. Uppsala, Sweden 2007. ISSN 0013-886x. Sweden with Carl von Linné is the cradle of Systematics and therefore also the origin of a disproportionate part of the taxonomic type material. Bees are no exception. This report is the first part of an examination, including taxonomic revision, of the actual, re- puted or potential bee type material of Swedish origin. Focus is on the status, type locality, present condition, depository and history. Here, a total of 20 original specific taxa have been studied. Lectotypes are designated for 13 whereby it is stated that seven epithets are valid (bold), viz. Andrena cincta Nylander 1848, A. clypearis Nylander 1848, A. subopaca Nylander 1848, Coelioxys temporalis Nylander 1848, Colletes suecica Aurivillius 1903, Halictus sexnotatulus Nylander 1852, Heriades breviuscula Nylander 1848, Kirbya mel- anura Nylander 1852, Megachile apicalis Nylander 1848 which replacement name Mega- chile analis Nylander 1852 has the same type, Nomada cincticornis 1848, N. obtusifrons Nylander 1848, Prosopis armillata Nylander 1848 and Rhophites halictulus Nylander 1852. Especially, Kirbya melanura is found to be a senior synonym of Cilissa wankowiczi Radoszkowski 1891. The valid name of the species is Melitta melanura (Nylander) and its type locality the island of Gotland in the Baltic. L. Anders Nilsson, Department of Plant Ecology, Evolutionary Biology Centre, Uppsala University, Villavägen 14, SE-752 36 Uppsala, Sweden, E-mail: anders.nilsson@ebc.
    [Show full text]
  • Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S
    Prepared in cooperation with the U.S. Department of Agriculture Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs Open-File Report 2020–1037 U.S. Department of the Interior U.S. Geological Survey A B C D E F G H I Cover. A, Bumble bee (Bombus sp.) visiting a locowood flower. Photograph by Stacy Simanonok, U.S. Geological Survey (USGS). B, Honey bee (Apis mellifera) foraging on yellow sweetclover (Melilotus officinalis). Photograph by Sarah Scott, USGS. C, Two researchers working on honey bee colonies in a North Dakota apiary. Photograph by Elyssa McCulloch, USGS. D, Purple prairie clover (Dalea purpurea) against a backdrop of grass. Photograph by Stacy Simanonok, USGS. E, Conservation Reserve Program pollinator habitat in bloom. Photograph by Clint Otto, USGS. F, Prairie onion (Allium stellatum) along the slope of a North Dakota hillside. Photograph by Mary Powley, USGS. G, A researcher assesses a honey bee colony in North Dakota. Photograph by Katie Lee, University of Minnesota. H, Honey bee foraging on alfalfa (Medicago sativa). Photograph by Savannah Adams, USGS. I, Bee resting on woolly paperflower (Psilostrophe tagetina). Photograph by Angela Begosh, Oklahoma State University. Front cover background and back cover, A USGS research transect on a North Dakota Conservation Reserve Program field in full bloom. Photograph by Mary Powley, USGS. Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs By Clint R.V. Otto, Autumn Smart, Robert S. Cornman, Michael Simanonok, and Deborah D. Iwanowicz Prepared in cooperation with the U.S.
    [Show full text]
  • Coleoptera: Mordellidae) Based on Re-Examined Type Material and DNA Barcodes, with New Distributional Records and Comments on Morphological Variability
    The Canadian Entomologist (2021), 153, 343–367 Published on behalf of the doi:10.4039/tce.2021.3 Entomological Society of Canada ARTICLE Revealing the identity of Mordellistena minima and M. pseudorhenana (Coleoptera: Mordellidae) based on re-examined type material and DNA barcodes, with new distributional records and comments on morphological variability Dávid Selnekovič1* , Katarína Goffová1, Ján Kodada1, and Roberta Improta2 1Department of Zoology, Comenius University in Bratislava Faculty of Natural Sciences, Ilkovičova 6, Bratislava, SK-84215, Slovakia and 2Museo Zoologico, Centro Musei delle Scienze Naturali e Fisiche dell’Università degli Studi di Napoli Federico II, Via Mezzocannone 8, Naples, IT-80134, Italy *Corresponding author. Email: [email protected] (Received 14 July 2020; accepted 21 September 2020; first published online 10 March 2021) Abstract The current interpretation of two common European species, Mordellistena minima Costa, 1854 and M. pseudorhenana Ermisch, 1977, is based on misidentification. The confusion regarding the identity of the species is fixed based on the revised type material. Here, the species are redescribed, and diagnostic characters are provided. Mordellistena pseudorhenana is revalidated. Mordellistena emeryi Schilsky, 1895 is recognised as a new synonym of M. minima. Mordellistena sajoi Ermisch, 1977 is recognised as a new synonym of M. pseudorhenana. Lectotype and paralectotypes of M. emeryi are designated. Mordellistena pseudorhenana is reported for the first time from Bosnia and Herzegovina, Slovenia, and Switzerland. Two morphotypes of M. pseudorhenana differing in size and shape of the parameres are recognised. Morphological differences are quantified and displayed using principal component analysis. In addition, DNA barcodes have been used for the first time in family Mordellidae to examine the divergences between the species and to interpret the morphological variability observed in M.
    [Show full text]
  • Genotypic Diversity and Clonal Structure of Erigeron Annuus
    26. Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und -bekämpfung, 11.-13. März 2014 in Braunschweig Genotypic diversity and clonal structure of Erigeron annuus (Asteraceae) in Lithuania Genetische Vielfalt und Klonstruktur von Erigeron annuus (Asteraceae) in Litauen Virginija Tunaitienė1*, Jolanta Patamsytė1, Tatjana Čėsnienė1, Violeta Kleizaitė1, Donatas Naugžemys2, Vytautas Rančelis1 and Donatas Žvingila1 1Department of Botany and Genetics, Vilnius University, M. K. Čiurlionio 21, Vilnius, Lithuania 2Botanical Garden of Vilnius University, Kairėnų 43, Vilnius, Lithuania *Corresponding author, [email protected] DOI 10.5073/jka.2014.443.023 Abstract This study was conducted to assess the clonal structure and genetic diversity of alien herbaceous plant species Erigeron annuus. The global warming and changes in agriculture practice in the past few decades were favourable for the expansion of this species in Lithuania. We used RAPD and ISSR assays to assess genetic variation within and among 29 populations of E. annuus. A total of 278 molecular markers were revealed. Our study detected reduced level of genetic diversity of invasive populations of E. annuus. Significant differences in DNA polymorphism among populations of E. annuus were also found. Some populations of this species are composed of genetically identical plants, while others were polymorphic. Clonal diversity of study populations ranged from 0.083 to 0.4 for both DNA marker systems. The Simpsons diversity index values ranged from 0.0 to 0.636. The average number of genotypes per population established using both assays was about 1.7. Out of 328 E. annuus individuals only 16 showed unique RAPD and 14 unique ISSR banding patterns. The remaining plants were clones of different size.
    [Show full text]