How Do Neurons Communicate?

Total Page:16

File Type:pdf, Size:1020Kb

How Do Neurons Communicate? p CHAPTER 5 How Do Neurons Communicate? A Chemical Message Neurotransmitter Systems The Structure of Synapses Neurotransmission in the Skeletal Motor System Focus on Disorders: Parkinson’s Disease Neurotransmission in the Autonomic Nervous Stages in Neurotransmitter Function System Types of Synapses Neurotransmission in the Central Nervous System The Evolution of a Complex Neural Focus on Disorders: The Case of the Frozen Transmission System Addict Excitatory and Inhibitory Messages The Role of Synapses in Learning The Kinds of Neurotransmitters and Memory Identifying Neurotransmitters Learning and Changes in Neurotransmitter Neurotransmitter Classification Release The Types of Receptors for Neurotransmitters Synaptic Change with Learning in the Focus on Disorders: Awakening with L-Dopa Mammalian Brain Long-Term Learning and Associative Learning Learning and the Formation or Loss of Synapses Patrisha Thomson/Stone Micrograph: Dr. Dennis Kunkel/Phototake 152 I p he sea bird called the puffin (genus Fratercula, the puffin’s body, imposes greater resistance to movement which is Latin for “little brother”) exhibits remark- than air does. T able behavior during its breeding season. It digs a To meet its nutrient and oxygen needs during its vari- burrow as deep as 4 feet into the earth, in which to lay its ous behaviors, the puffin’s heart rate changes to match its single egg. While on the ground, the puffin is relatively energy expenditure. The heart beats slowly on land and in- inactive, sitting on its egg or in front of its burrow. But, creases greatly in flight. When the puffin dives beneath the after the egg hatches, the puffin begins a period of Her- surface of the water, however, its heart stops beating. This culean labors. It must fly constantly back and forth response is called diving bradycardia (brady meaning between its burrow and its fishing ground to feed its rav- “slow”; cardia meaning “heart”). Bradycardia is a strategy enous young. It fishes by diving underwater and pro- for conserving oxygen under water, because the circulatory pelling itself by flapping its short stubby wings as if it system expends no energy when the heart ceases pumping. were flying. One by one it catches as many as 30 small Your heart rate varies in the same way as the puffin’s fish, all of which it holds in its beak to be carried back to to meet your energy needs, slowing when you are at rest its chick (Figure 5-1). The chick may eat as many as 2000 and increasing when you are active. Even exciting or re- fish in its first 40 days of life. When flying to its fishing laxing thoughts can cause your heart to increase or de- ground, the puffin exerts a great deal of effort to maintain crease its rate of beating. And, yes, like the puffin and all its momentum. It also expends much energy as it “flies” other diving animals, when you submerge your head in through the water, because the water, although it supports water, you, too, display diving bradycardia. What regulates all this turning up, down, and off of heart- beat as behavior requires? Because the heart has no knowledge Kevin Schafer about how quickly it should beat, it must be told to adjust its rate of beating. These com- mands consist of at least two different mes- sages: an excitatory message that says “speed up” and an inhibitory message that says “slow down.” What is important to our understanding of how neurons interact is that it was an experiment designed to study how heart rate is controlled that yielded an answer to the question of how neurons com- municate with one another. In this chapter, we explore that answer in some detail. First, Figure 5-1 we consider the chemical signals that neurons use to in- A puffin is returning with food for its chick. Its heart rate varies to hibit or excite each other. Then, we examine the function match its energy needs, slowing down on land, increasing during of excitatory and inhibitory synapses and excitatory and flight, and stopping completely when the puffin dives below the surface of the water to fish. inhibitory receptors. Finally, we investigate the changes that synapses undergo during learning. I 153 154 I CHAPTER 5 A CHEMICAL MESSAGE In 1921, Otto Loewi conducted a now well-known experiment on the control of heart rate, the design of which came to him in a dream. One night, having fallen asleep while reading a short novel, he awoke suddenly and completely, with the idea fully formed. He scribbled the plan of the experiment on a scrap of paper and went back to sleep. The next morning, he could not decipher what he had written, yet he felt it was impor- tant. All day he went about in a distracted manner, looking occasionally at his notes, but wholly mystified about their meaning. That night he again awoke, vividly recalling Otto Loewi (1873–1961) the ideas in his previous night’s dream. Fortunately, he still remembered them the next morning. Loewi immediately set up and successfully performed the experiment. Loewi’s experiment involved electrically stimulating a frog’s vagus nerve, which leads from the brain to the heart, while at the same time channeling the fluid in which the stim- ulated heart had been immersed to a second heart that was not electrically stimulated, as shown in Figure 5-2. The fluid traveled from one container to the other through a tube. Loewi recorded the rate of beating of both hearts. The electrical stimulation decreased the rate of beating of the first heart, but, more important, the fluid transferred from the first to the second container slowed the rate of beating of the second heart, too. Clearly, a mes- sage about the speed at which to beat was somehow carried in the fluid. But where did the message originally come from? The only way in which it could have gotten into the fluid was by a chemical released from the vagus nerve. This chemical must have dissolved into the fluid in sufficient quantity to influence the sec- ond heart. The experiment therefore demonstrated that the vagus nerve contains a EXPERIMENT Question: How does a neuron pass on a message? Stimulating Recording device device 1 2 Vagus nerve of frog Fluid is transferred heart 1 is stimulated. from first to second container. Figure 5-2 Otto Loewi’s 1921 experiment Vagus demonstrating the involvement of a nerve neurochemical in controlling heart rate. He electronically stimulated the vagus Fluid transfer nerve going to a frog heart that was maintained in a salt bath. The heart decreased its rate of beating. Fluid from the bath was transferred to a second Frog heart 1 Frog heart 2 bath containing a second heart. The Rate of electrical recording from the second heartbeats heart shows that its rate of beating also decreased. This experiment demonstrates that a chemical released from the vagus Stimulation nerve of the first heart can reduce the 3 4 Conclusion rate of beating of the second heart. Recording from frog heart …as does the recording The message is a Follow the main steps in the experiment 1 shows decreased rate of from frog heart 2 after chemical released to arrive at the conclusion that beating after stimulation… the fluid transfer. by the nerve. neurotransmission is chemical. p HOW DO NEURONS COMMUNICATE? I 155 chemical that tells the heart to slow its rate of beating. Loewi subsequently identified that chemical as acetylcholine (ACh). In further experiments, Loewi stimulated another nerve, called the accelerator nerve, and obtained a speeding-up of heart rate. Moreover, the fluid that bathed the accelerated heart increased the rate of beating of a second heart that was not electri- cally stimulated. Loewi identified the chemical that carried the message to speed up heart rate as epinephrine (EP). Together, these complementary experiments showed that chemicals from the vagus nerve and the accelerator nerve modulate heart rate, with one inhibiting the heart and the other exciting it. Acetylcholine (ACh) Epinephrine (EP) Chemicals that are released by a neuron onto a target are now referred to as chemical neurotransmitters. Neurons that contain a chemical neurotransmitter of a certain type are named after that neurotransmitter. For example, neurons with terminals that release ACh are called acetylcholine neurons, whereas neurons that release EP are called epi- Figure 5-3 nephrine neurons. This naming of neurons by their chemical neurotransmitters helps to In a light microscope, light is reflected tell us whether those particular neurons have excitatory or inhibitory effects on other through the specimen and into the eye cells. It also helps to tell us something about the behavior in which the neuron is engaged. of the viewer. In an electron microscope, In the next section, we will look at the structure of a synapse, the site where an electron beam is directed through the chemical communication by means of a neurotransmitter takes place. We will also ex- specimen and onto a reflectant surface, amine the mechanisms that allow the release of a neurotransmitter into a synapse, as where the viewer sees the image. well as the types of synapses that exist in the brain. You will learn how a group of neu- Because electrons scatter less than do rons, all of which use a specific neurotransmitter, can form a system that mediates a light particles, an electron microscope certain aspect of behavior. Damage to such a system results in neurological disorders can show finer details than a light such as Parkinson’s disease (described in “Parkinson’s Disease” on page 156). microscope can show. Whereas a light microscope can be used to see the general features of a cell, an electron The Structure of Synapses microscope can be used to examine the details of a cell’s organelles.
Recommended publications
  • Crayfish Escape Behavior and Central Synapses
    Crayfish Escape Behavior and Central Synapses. III. Electrical Junctions and Dendrite Spikes in Fast Flexor Motoneurons ROBERT S. ZUCKER Department of Biological Sciences and Program in the Neurological Sciences, Stanford University, Stanford, California 94305 THE LATERAL giant fiber is the decision fiber and fast flexor motoneurons are located in for a behavioral response in crayfish in- the dorsal neuropil of each abdominal gan- volving rapid tail flexion in response to glion. Dye injections and anatomical recon- abdominal tactile stimulation (27). Each structions of ‘identified motoneurons reveal lateral giant impulse is followed by a rapid that only those motoneurons which have tail flexion or tail flip, and when the giant dentritic branches in contact with a giant fiber does not fire in response to such stim- fiber are activated by that giant fiber (12, uli, the movement does not occur. 21). All of tl ie fast flexor motoneurons are The afferent limb of the reflex exciting excited by the ipsilateral giant; all but F4, the lateral giant has been described (28), F5 and F7 are also excited by the contra- and the habituation of the behavior has latkral giant (21 a). been explained in terms of the properties The excitation of these motoneurons, of this part of the neural circuit (29). seen as depolarizing potentials in their The properties of the neuromuscular somata, does not always reach threshold for junctions between the fast flexor motoneu- generating a spike which propagates out the rons and the phasic flexor muscles have also axon to the periphery (14). Indeed, only t,he been described (13).
    [Show full text]
  • Long-Term Adult Human Brain Slice Cultures As a Model System to Study
    TOOLS AND RESOURCES Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease Niklas Schwarz1, Betu¨ l Uysal1, Marc Welzer2,3, Jacqueline C Bahr1, Nikolas Layer1, Heidi Lo¨ ffler1, Kornelijus Stanaitis1, Harshad PA1, Yvonne G Weber1,4, Ulrike BS Hedrich1, Ju¨ rgen B Honegger4, Angelos Skodras2,3, Albert J Becker5, Thomas V Wuttke1,4†*, Henner Koch1†* 1Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tu¨ bingen, Tu¨ bingen, Germany; 2Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tu¨ bingen, Tu¨ bingen, Germany; 3German Center for Neurodegenerative Diseases (DZNE), Tu¨ bingen, Germany; 4Department of Neurosurgery, University of Tu¨ bingen, Tu¨ bingen, Germany; 5Department of Neuropathology, Section for Translational Epilepsy Research, University Bonn Medical Center, Bonn, Germany Abstract Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons *For correspondence: in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient [email protected] viral transduction of cultures, enabling ‘high throughput’ fluorescence-mediated 3D reconstruction tuebingen.de (TVW); of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and [email protected] demonstrate feasibility of long term live cell imaging of human cells in vitro.
    [Show full text]
  • Build a Neuron
    Build a Neuron Objectives: 1. To understand what a neuron is and what it does 2. To understand the anatomy of a neuron in relation to function This activity is great for ALL ages-even college students!! Materials: pipe cleaners (2 full size, 1 cut into 3 for each student) pony beads (6/student Introduction: Little kids: ask them where their brain is (I point to my head and torso areas till they ​ shake their head yes) Talk about legos being the building blocks for a tower and relate that to neurons being the building blocks for your brain and that neurons send messages to other parts of your brain and to and from all your body parts. Give examples: touch from body to brain, movement from brain to body. Neurons are the building blocks of the brain that send and receive messages. Neurons come in all different shapes. Experiment: 1. First build soma by twisting a pipe cleaner into a circle 2. Then put a 2nd pipe cleaner through the circle and bend it over and twist the two strands together to make it look like a lollipop (axon) 3. take 3 shorter pipe cleaners attach to cell body to make dendrites 4. add 6 beads on the axon making sure there is space between beads for the electricity to “jump” between them to send the signal super fast. (myelin sheath) 5. Twist the end of the axon to make it look like 2 feet for the axon terminal. 6. Make a brain by having all of the neurons “talk” to each other (have each student hold their neuron because they’ll just throw them on a table for you to do it.) messages come in through the dendrites and if its a strong enough electrical change, then the cell body sends the Build a Neuron message down it’s axon where a neurotransmitter is released.
    [Show full text]
  • Microglia Control Glutamatergic Synapses in the Adult Mouse Hippocampus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429096; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Microglia control glutamatergic synapses in the adult mouse hippocampus Short title: Microglia and glutamatergic synapses Bernadette Basilico1†*‡, Laura Ferrucci1‡, Patrizia Ratano2‡, Maria T. Golia1, Alfonso Grimaldi3, Maria Rosito3, Valentina Ferretti4, Ingrid Reverte1,5, Maria C. Marrone6, Maria Giubettini3,7, Valeria De Turris3, Debora Salerno3, Stefano Garofalo1, Marie-Kim St-Pierre8, Micael Carrier8, Massimiliano Renzi1, Francesca Pagani3, Marcello Raspa9, Ferdinando Scavizzi9, Cornelius T. Gross10, Silvia Marinelli5, Marie E. Tremblay8,11, Daniele Caprioli1,5, Laura Maggi1, Cristina Limatola1,2, Silvia Di Angelantonio1,3§, Davide Ragozzino1,5*§ 1Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy. 2IRCCS Neuromed, Via Atinese 18, 86077, Pozzilli, IS, Italy. 3Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy. 4Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza University of Rome, Rome, Italy. 5Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. 6European Brain Research Institute-Rita Levi Montalcini, Rome, Italy. 7CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy. 8Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada; Département de médecine moléculaire, Université Laval Québec, QC, Canada. 9National Research Council, Institute of Biochemistry and Cell Biology (CNR- IBBC/EMMA/Infrafrontier/IMPC), International Campus “A. Buzzati-Traverso”, Monterotondo (Rome) Italy.
    [Show full text]
  • Neurons and Glia
    CHAPTER TWO Neurons and Glia INTRODUCTION THE NEURON DOCTRINE The Golgi Stain Cajal’s Contribution BOX 2.1 OF SPECIAL INTEREST: Advances in Microscopy THE PROTOTYPICAL NEURON The Soma The Nucleus Neuronal Genes, Genetic Variation, and Genetic Engineering BOX 2.2 BRAIN FOOD: Expressing One’s Mind in the Post-Genomic Era BOX 2.3 PATH OF DISCOVERY: Gene Targeting in Mice, by Mario Capecchi Rough Endoplasmic Reticulum Smooth Endoplasmic Reticulum and the Golgi Apparatus The Mitochondrion The Neuronal Membrane The Cytoskeleton Microtubules BOX 2.4 OF SPECIAL INTEREST: Alzheimer’s Disease and the Neuronal Cytoskeleton Microfilaments Neurofilaments The Axon The Axon Terminal The Synapse Axoplasmic Transport BOX 2.5 OF SPECIAL INTEREST: Hitching a Ride with Retrograde Transport Dendrites BOX 2.6 OF SPECIAL INTEREST: Intellectual Disability and Dendritic Spines CLASSIFYING NEURONS Classification Based on Neuronal Structure Number of Neurites Dendrites Connections Axon Length Classification Based on Gene Expression BOX 2.7 BRAIN FOOD: Understanding Neuronal Structure and Function with Incredible Cre GLIA Astrocytes Myelinating Glia Other Non-Neuronal Cells CONCLUDING REMARKS 23 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 24 PART ONE FOUNDATIONS INTRODUCTION All tissues and organs in the body consist of cells. The specialized func- tions of cells and how they interact determine the functions of organs. The brain is an organ—to be sure, the most sophisticated and complex organ that nature has devised. But the basic strategy for unraveling its functions is no different from that used to investigate the pancreas or the lung. We must begin by learning how brain cells work individually and then see how they are assembled to work together.
    [Show full text]
  • The Narrowing of Dendrite Branches Across Nodes Follows a Well-Defined Scaling Law
    The narrowing of dendrite branches across nodes follows a well-defined scaling law Maijia Liaoa, Xin Liangb, and Jonathon Howarda,1 aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; and bTsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China Edited by Yuh Nung Jan, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, and approved May 17, 2021 (received for review October 28, 2020) The systematic variation of diameters in branched networks has minimized. Da Vinci’s law has been reformulated as the “pipe tantalized biologists since the discovery of da Vinci’s rule for trees. model” for plants, in which a fixed cross-section of stems and Da Vinci’s rule can be formulated as a power law with exponent branches is required to support each unit amount of leaves (13). two: The square of the mother branch’s diameter is equal to the Experimental support for scaling laws, however, is scarce because sum of the squares of those of the daughters. Power laws, with of the difficulties of imaging entire branched networks and because different exponents, have been proposed for branching in circula- intrinsic anatomical variability may obscure precise laws (14). Thus, tory systems (Murray’s law with exponent 3) and in neurons (Rall’s it is an open question whether scaling laws such as Eq. 1 apply in law with exponent 3/2). The laws have been derived theoretically, biological systems. based on optimality arguments, but, for the most part, have not To quantitatively test diameter-scaling laws in neurons, it is been tested rigorously.
    [Show full text]
  • Part III: Modeling Neurotransmission – a Cholinergic Synapse
    Part III: Modeling Neurotransmission – A Cholinergic Synapse Operation of the nervous system is dependent on the flow of information through chains of neurons functionally connected by synapses. The neuron conducting impulses toward the synapse is the presynaptic neuron, and the neuron transmitting the signal away from the synapse is the postsynaptic neuron. Chemical synapses are specialized for release and reception of chemical neurotransmitters. For the most part, neurotransmitter receptors in the membrane of the postsynaptic cell are either 1.) channel-linked receptors, which mediate fast synaptic transmission, or 2.) G protein-linked receptors, which oversee slow synaptic responses. Channel-linked receptors are ligand-gated ion channels that interact directly with a neurotransmitter and are called ionotropic receptors. Alternatively, metabotropic receptors do not have a channel that opens or closes but rather, are linked to a G-protein. Once the neurotransmitter binds to the metabotropic receptor, the receptor activates the G-protein which, in turn, goes on to activate another molecule. 3a. Model the ionotropic cholinergic synapse shown below. Be sure to label all of the following: voltage-gated sodium channel, voltage-gated potassium channel, neurotransmitter, synaptic vesicle, presynaptic cell, postsynaptic cell, potassium leak channel, sodium-potassium pump, synaptic cleft, acetylcholine receptor, acetylcholinesterase, calcium channel. When a nerve impulse (action potential) reaches the axon terminal, it sets into motion a chain of events that triggers the release of neurotransmitter. You will next model the events of neurotransmission at a cholinergic synapse. Cholinergic synapses utilize acetylcholine as the chemical of neurotransmission. MSOE Center for BioMolecular Modeling Synapse Kit: Section 3-6 | 1 Step 1 - Action potential arrives at the Step 2 - Calcium channels open in the terminal end of the presynaptic cell.
    [Show full text]
  • SYNAPTIC TRANSMISSION SYNAPTIC TRANSMISSION Study
    SYNAPTIC TRANSMISSION Study material for B.Sc (H) Physiology 2nd Sem Dr Atanu Saha REVIEW ~ SETTING THE STAGE Information is digitized at the axon hillock and a stream of action potentials carries the output of a neuron down the axon to other neurons. Neurons are the only class of cells that do not touch neighboring cells. How is this output transferred to the next neuron in the chain? The transfer of information from the end of the axon of one neuron to the next neuron is called synaptic transmission. MOVING THE MESSAGE Transmission of the signal between neurons takes place across the synapse, the space between two neurons. In higher organisms this transmission is chemical. Synaptic transmission then causes electrical events in the next neuron. All the inputs coming into a particular neuron are integrated to form the generator potential at its ax on hillock where a new stream of action potentials is generated. SYNAPTIC CONNECTIONS Neurons are the only cells that can communicate with one another rapidly over great distance Synaptic connections are specific. Underlie perception, emotion, behavior The average neuron makes 1000 synaptic connections - receives more The human brain contains 1011 neurons & forms 1014 connections Neural processing occurs from the integration of the various synaptic inputs on a neuron into the generator potential of that neuron. SPECIAL CHANNELS Recall the 2 classes of channels for signaling within cells: Resting channels that generate resting potential Voltage-gated channels that produce an action potential Synaptic transmission uses 2 additional classes of chhlannels: Gap-junction channels Ligand-gated channels COMPOSITION OF A SYNAPSE The synapse is made of 3 elements: pre-synaptic terminal postsynaptic cell zone of apposition TYPES OF SYNAPSES Syypnapses are divided into 2 grou ps based on zones of apposition: Electrical Chemical Fast Chemical Modulating (slow) Chemical ELECTRICAL SYNAPSES Common in invertebrate neurons involved with import ant reflex circuit s.
    [Show full text]
  • NEURAL CONNECTIONS: Some You Use, Some You Lose
    NEURAL CONNECTIONS: Some You Use, Some You Lose by JOHN T. BRUER SOURCE: Phi Delta Kappan 81 no4 264-77 D 1999 . The magazine publisher is the copyright holder of this article and it is reproduced with permission. Further reproduction of this article in violation of the copyright is prohibited JOHN T. BRUER is president of the James S. McDonnell Foundation, St. Louis. This article is adapted from his new book, The Myth of the First Three Years (Free Press, 1999), and is reprinted by arrangement with The Free Press, a division of Simon Schuster Inc. ©1999, John T. Bruer . OVER 20 YEARS AGO, neuroscientists discovered that humans and other animals experience a rapid increase in brain connectivity -- an exuberant burst of synapse formation -- early in development. They have studied this process most carefully in the brain's outer layer, or cortex, which is essentially our gray matter. In these studies, neuroscientists have documented that over our life spans the number of synapses per unit area or unit volume of cortical tissue changes, as does the number of synapses per neuron. Neuroscientists refer to the number of synapses per unit of cortical tissue as the brain's synaptic density. Over our lifetimes, our brain's synaptic density changes in an interesting, patterned way. This pattern of synaptic change and what it might mean is the first neurobiological strand of the Myth of the First Three Years. (The second strand of the Myth deals with the notion of critical periods, and the third takes up the matter of enriched, or complex, environments.) Popular discussions of the new brain science trade heavily on what happens to synapses during infancy and childhood.
    [Show full text]
  • How Do Dendrites Take Their Shape?
    © 2001 Nature Publishing Group http://neurosci.nature.com review How do dendrites take their shape? Ethan K. Scott1 and Liqun Luo1,2 1 Department of Biological Sciences, Stanford University, Stanford, California 94305, USA 2 Neurosciences Program, Stanford University, Stanford, California 94305, USA Correspondence should be addressed to L.L. ([email protected]) Recent technical advances have made possible the visualization and genetic manipulation of individual dendritic trees. These studies have led to the identification and characterization of molecules that are important for different aspects of dendritic development. Although much remains to be learned, the existing knowledge has allowed us to take initial steps toward a comprehensive understanding of how complex dendritic trees are built. In this review, we describe recent advances in our understanding of the molecular mechanisms underlying dendritic morphogenesis, and discuss their cell-biological implications. With their great complexity and variety, dendrites (Fig. 1) are won- added advantage, can be used to study loss-of-function muta- ders of nature’s design. Built to receive and integrate inputs to neu- tions. Much of the progress reviewed in this article would not rons, dendrites occupy much of the brain’s volume and have been have been possible without these technological advances. the subject of studies since the days of Golgi and Cajal1. Over the course of much of the twentieth century, the prevailing belief that Breaking down complex dendritic trees axons take the more active role in wiring the brain and in estab- Although the processes used to build dendritic trees are complex lishing synaptic specificity led researchers to focus on the develop- and diverse (Fig.
    [Show full text]
  • Dendrites and Disease Daniel Johnston, Andreas Frick, and Nicholas Poolos
    OUP-FIRST UNCORRECTED PROOF, October 5, 2015 Chapter 24 Dendrites and disease Daniel Johnston, Andreas Frick, and Nicholas Poolos Summary While the functional properties of dendrites in the normal brain are the main focus of this book, there is a long history of research related to changes in dendrites that are associated with certain neurological, psychiatric, and developmental disorders. Much of this research has documented morphological changes in dendritic structure, but a significant increase in work has appeared since the second edition of this book in which changes in dendritic function have been described. In this chapter we briefly review some of the research relating structural changes in dendrites to disease, sufficient to provide a beginning reference source for readers interested in pursuing the subject further. The bulk of this chapter, however, will focus on the current state of knowledge related to dendritic “channelopathies.” These are defined as genetic or acquired defects in the normal func- tion or expression of ion channels (with a focus on voltage-gated ion channels) that are known to regulate how neuronal dendrites process and store information. The most specific and detailed information is available for epilepsy, which will be discussed at some length, but other data will be presented for certain neurodevelopmental disorders (e.g., autism, fragile X syndrome) and dis- eases of the adult and aging brain. Based on our knowledge of the normal properties of dendrites, we provide a framework for understanding how dendritic channelopathies can influence synaptic integration and plasticity and thus form the basis of abnormal brain function. Introduction Abnormalities in dendritic structure are a characteristic feature of many brain disorders.
    [Show full text]
  • MODULE 2: HISTOLOGY II Muscle and Nervous Tissue
    MODULE 2: HISTOLOGY II Muscle and Nervous Tissue Muscle Tissue General Characteristics of Muscle Elongated cells in direction of contraction Appearance depends on direction of cut (longitudinal or cross section) General Functions of Muscle Contracts in response to a stimulus to generate movement o Movement of one part with respect to another o Movement of materials through the body o Movement of the body through space (locomotion) Skeletal Muscle A. Skeletal muscle makes up the majority of the tissue that we think of when we think of muscles. It is under voluntary control and is located throughout the body. Skeletal muscle is generally attached to bones by tendons and uses these bones as levers to accomplish work. However, not all skeletal muscle is anchored to bones. Some, like those in the face, are attached to fibrous connective tissue. Skeletal muscle occurs in bundles. Each skeletal muscle cell or fiber is elongated and has multiple nuclei that are located on the periphery of the cell. The cells are very large and can be several centimeters long, often running the entire length of the muscle (note: when referring to muscles we use the terms cell and fiber interchangeably. This is not to be confused with the fibers found in the matrix of connective tissue). Skeletal muscle is also striated with alternating light and dark bands running the entire length of the cell. These striations are caused by the regular overlapping arrangement of the muscle proteins, actin and myosin. The dark band is called the “A Band” and the light band is the “I Band.” If you look carefully, you will be able to identify a very thin, dark line running down the middle of the “I Band.” This represents the backbone of the actin molecule and is called the “Z-disk”.
    [Show full text]