RESEARCH ARTICLE Sequential phosphorylation of NDEL1 by the DYRK2-GSK3b complex is critical for neuronal morphogenesis Youngsik Woo1, Soo Jeong Kim1, Bo Kyoung Suh1, Yongdo Kwak1†, Hyun-Jin Jung2, Truong Thi My Nhung1, Dong Jin Mun1, Ji-Ho Hong1‡, Su-Jin Noh1, Seunghyun Kim1, Ahryoung Lee1, Seung Tae Baek1, Minh Dang Nguyen3,4,5,6, Youngshik Choe2, Sang Ki Park1* 1Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea; 2Korea Brain Research Institute, Daegu, Republic of Korea; 3Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; 4Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada; 5Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada; 6Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada Abstract Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are *For correspondence: still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for
[email protected] neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of Present address: †SK NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation Biopharmaceuticals Ltd, Republic of NDEL1 S332 by GSK3b. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3b to of Korea; ‡LG Chem Ltd, form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual Republic of Korea phosphorylation increases the filamentous actin dynamics.