Introduction to Pathophysiology and Chapter 2 – Genetic Diseases PART 1: INTRODUCTION

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Pathophysiology and Chapter 2 – Genetic Diseases PART 1: INTRODUCTION PATHOPHYSIOLOGY Name Introduction to Pathophysiology and Chapter 2 – Genetic Diseases PART 1: INTRODUCTION 1. Pathophysiology is the study of the functional changes produced by disease processes. For example: the pathophysiology of insulin dependent diabetes mellitus (IDDM) includes things such as inadequate uptake of glucose into body cells, elevated blood glucose, destruction of tissue capillaries by excessive glucose, ketoacidosis from fat catabolism, and tissue ischemia and necrosis. 2. Homeostasis is one of the most fundamental ideas in physiology. Homeostasis is the maintenance of a constant internal environment, even though external conditions may be continually changing. - It is a state of dynamic equilibrium, where there is constant controlled change. Cells die and are replaced, and there is a constant flux of nutrients and other chemicals, but throughout life, balance is maintained. - Disease upsets homeostasis, and treatment seeks to restore it. 3. Differential diagnosis includes: - Identifying the disease responsible for the observed signs and symptoms, and - Distinguishing that disease from other diseases that may produce similar signs and symptoms. 4. The etiology of a disease includes all the factors that cause the disease. For example: The etiology of Insulin Dependent Diabetes Mellitus (IDDM) is the destruction of beta cells in the pancreas by autoimmune disease, leading to a deficiency of insulin. 5. Prognosis is the outcome that can be expected for persons with a particular disease. - This may include discussion of expected outcomes with and without treatment. - It will also include a description of changes in the quality of life individuals might experience, as well as changes in life expectancy. 6. Symptoms are the characteristics of the disease that are observed by the individual having the disease. - For example, pain is a common symptom of disease. 7. Signs are characteristics of the disease that can be observed by a clinician or can be measured with laboratory tests. - For example, elevated blood glucose cannot be directly felt by the individual, but it can be measured in the laboratory. 8. A case history is the story of a person presenting with a disease. The case history may include family background, signs and symptoms, test results, and clinical observations. 9. Treatment is what is done to cure a disease or to alleviate its symptoms. Since this is a pathophysiology course, and not a clinical course, we will focus on the physiological basis of treatment. In other words, what does the treatment do to restore homeostasis? 10. A sequela is the result or outcome of a disease process or, perhaps, of a treatment. The plural is sequelae. (Don’t ask me why sequel and sequels would not suffice, but medical people seem to like it this way!) - For example, among the possible sequelae of diabetes mellitus are: blindness, heart disease, and peripheral neuropathy. 2 PART 2: CHAPTER 2 – GENES AND GENETIC DISEASES Review the information at the beginning of Chapter 2. I. DNA Mutation Any inherited alteration of genetic material. A. Chromosome aberrations (see below) - leading known cause of mental retardation and miscarriage. B. Base pair substitution - one base pair is substituted for another C. Frameshift mutation Insertion or deletion of one or more base pairs Causes a change in the entire “reading frame” The resulting protein sequence will be wrong D. Spontaneous mutation Mutation that occurs in absence of exposure to known mutagens [10-4 to 10-7 /gene/generation] E. Mutational hotspots Areas of the chromosomes that have high mutation rates A cytosine base followed by a guanine is known to account for a disproportionately large percentage of disease-causing mutations F. Mutagen Agent known to increase the frequency of mutations o Radiation o Chemicals II. Chromosomes Somatic cells o Contain 46 chromosomes (23 pairs) o Called diploid cells Gametes o Contain 23 chromosomes - one member of each chromosome pair o Called haploid cells A. Chromosomal Replication 1. Meiosis Formation of haploid cells (23 individual chromosomes) from diploid cells (23 pairs) Occurs in ovaries and testes to form the ova and sperm Two divisions occur, so a total of four daughter cells are formed 2. Mitosis Formation of daughter cells identical to parent (diploid cells) Forms somatic cells 3 B. Autosomes The first 22 of the 23 pairs of chromosomes in males and females The two members are virtually identical and thus said to be homologous C. Sex Chromosomes Remaining pair of chromosomes In females, it is a homologous pair (XX) In males, it is a nonhomologous pair (XY) D. Karyotype Ordered display of chromosomes E. Abnormalities in Chromosome Number 1. Euploid cells have a multiple of the normal number of chromosomes Haploid and diploid cells are euploid forms When a euploid cell has more than the diploid number, it is called a polyploid cell o Triploidy: a zygote having three copies of each chromosome (69) o Tetraploidy: four copies of each (92 total) Neither triploid nor tetraploid fetuses survive 2. Aneuploidy A somatic cell that does not contain a multiple of 23 chromosomes A cell containing three copies of one chromosome is trisomic (trisomy) Monosomy is the presence of only one copy of any chromosome Monosomy is often lethal, but infants can survive with trisomy of certain chromosomes “It is better to have extra than less” 3. Chromosome Separation a. Disjunction o Normal separation of chromosomes during cell division b. Nondisjunction o Usually the cause of aneuploidy o Failure of homologous chromosomes or sister chromatids to separate normally during meiosis or mitosis 4. Autosomal Aneuploidy Partial trisomy o Only an extra portion of a chromosome is present in each cell Chromosomal mosaics o Trisomies occurring only in some cells of the body o Usually results in a milder form of the disease caused by trisomy of the gene Down syndrome o Best known example of aneuploidy 4 o Trisomy 21 o 1:800 live births o Mentally retarded, low nasal bridge, epicanthal folds, protruding tongue, poor muscle tone o Risk increases with maternal age >35 o Usually caused by nondisjunction in ovum 5. Sex Chromosome Aneuploidy One of the most common is trisomy X. This is a female that has three X chromosomes. Termed “metafemales” o Symptoms are variable: sterility, menstrual irregularity, and/or mental retardation o Symptoms worsen with each additional X a. Turner syndrome Females with only one X chromosome Characteristics o Absence of ovaries (sterile) o Short stature (~ 4'7") o Webbing of the neck o Edema o Underdeveloped breasts; wide nipples o High number of aborted fetuses o X is usually inherited from mother b. Klinefelter syndrome Individuals with at least two Xs and one Y chromosome Characteristics o Male appearance o Develop female-like breasts o Small testes o Sparse body hair o Long limbs Some individuals can be XXY or XXXY The abnormalities increase with each X F. Abnormalities in Chromosome Structure 1. Chromosome breakage If a chromosome break does occur, physiologic mechanisms will usually repair the break, but the breaks often heal in a way that alters the structure of the chromosome Clastogens o Ionizing radiation, chemicals, and viruses 5 2. Deletions of DNA Cri du chat syndrome o “Cry of the cat” o Deletion of short arm of chromosome 5 o Low birth weight, mental retardation, microcephaly, and heart defects 3. Duplication - presence of a repeated gene or gene sequence. 4. Inversions - reversal of the gene order; can occur if there are two breaks on a chromosome and the region is reversed during reattachment. Affected individuals usually have no physical defect, but inversions may cause chromosomal aberrations in the offspring of the carrier. 5. Translocations - the interchanging of material between nonhomologous chromosomes. 6. Fragile sites Fragile sites are areas on chromosomes that develop distinctive breaks or gaps when cells are cultured. Fragile X syndrome o Site on the long arm of the X chromosome o Associated with mental retardation; second in occurrence to Down syndrome o Higher incidence in males because they have only one X chromosome III. Genetics A. Terminology 1. Locus - position of a gene along a chromosome 2. Allele - a different form of a particular gene at a given locus Example: Hgb A vs. Hgb S 3. Polymorphism - a locus that has two or more alleles that occur with appreciable frequency 4. Homozygous - loci on a pair of chromosomes have identical alleles Example - O blood type (OO) 5. Heterozygous - loci on a pair of chromosomes have different alleles Example - AB blood type (A and B genes on pair of loci) 6. Genotype (“what they have”) - the genetic makeup of an organism 7. Phenotype (“what they demonstrate”) - the observable, detectable, or outward appearance of the genetics of an organism Example - a person with the A blood type could be AA or AO. A is the phenotype; AA or AO is the genotype. B. Dominance and Recessiveness 1. If two alleles are found together, the allele that is observable is dominant, and the one whose effects are hidden is recessive 2. In genetics, the dominant allele is represented by a capital letter, and the recessive by a lowercase letter 3. Alleles can be codominant (trait is modified by both alleles) 6 4. Carriers A carrier is someone that has a disease gene but is phenotypically normal For a person to demonstrate a recessive disease, the pair of recessive genes must be inherited Example o Ss = sickle cell anemia carrier o ss = demonstrates sickle cell disease IV. Single-Gene Disorders A. Autosomal Dominant Disorders 1. Abnormal allele is dominant, normal allele is recessive, and the genes exist on a pair of autosomes Example - Huntington disease has a delayed age of onset, so dementia symptoms appear later in life. 2. Recurrence risk - The probability that parents of a child with a genetic disease will have yet another child with the same disease.
Recommended publications
  • Cerebrospinal Fluid in Critical Illness
    Cerebrospinal Fluid in Critical Illness B. VENKATESH, P. SCOTT, M. ZIEGENFUSS Intensive Care Facility, Division of Anaesthesiology and Intensive Care, Royal Brisbane Hospital, Brisbane, QUEENSLAND ABSTRACT Objective: To detail the physiology, pathophysiology and recent advances in diagnostic analysis of cerebrospinal fluid (CSF) in critical illness, and briefly review the pharmacokinetics and pharmaco- dynamics of drugs in the CSF when administered by the intravenous and intrathecal route. Data Sources: A review of articles published in peer reviewed journals from 1966 to 1999 and identified through a MEDLINE search on the cerebrospinal fluid. Summary of review: The examination of the CSF has become an integral part of the assessment of the critically ill neurological or neurosurgical patient. Its greatest value lies in the evaluation of meningitis. Recent publications describe the availability of new laboratory tests on the CSF in addition to the conventional cell count, protein sugar and microbiology studies. Whilst these additional tests have improved our understanding of the pathophysiology of the critically ill neurological/neurosurgical patient, they have a limited role in providing diagnostic or prognostic information. The literature pertaining to the use of these tests is reviewed together with a description of the alterations in CSF in critical illness. The pharmacokinetics and pharmacodynamics of drugs in the CSF, when administered by the intravenous and the intrathecal route, are also reviewed. Conclusions: The diagnostic utility of CSF investigation in critical illness is currently limited to the diagnosis of an infectious process. Studies that have demonstrated some usefulness of CSF analysis in predicting outcome in critical illness have not been able to show their superiority to conventional clinical examination.
    [Show full text]
  • Basic Skills in Interpreting Laboratory Data, 5Th Edition
    CHAPTER 1 DEFINITIONS AND CONCEPTS KAREN J. TIETZE This chapter is based, in part, on the second edition chapter titled “Definitions and Concepts,” which was written by Scott L. Traub. Objectives aboratory testing is used to detect disease, guide treatment, monitor response Lto treatment, and monitor disease progression. However, it is an imperfect sci­ ence. Laboratory testing may fail to identify abnormalities that are present (false After completing this chapter, negatives [FNs]) or identify abnormalities that are not present (false positives, the reader should be able to [FPs]). This chapter defines terms used to describe and differentiate laboratory • Differentiate between accuracy tests and describes factors that must be considered when assessing and applying and precision laboratory test results. • Distinguish between quantitative, qualitative, and semiqualitative DEFINITIONS laboratory tests Many terms are used to describe and differentiate laboratory test characteristics and • Define reference range and identify results. The clinician should recognize and understand these terms before assessing factors that affect a reference range and applying test results to individual patients. • Differentiate between sensitivity and Accuracy and Precision specificity, and calculate and assess Accuracy and precision are important laboratory quality control measures. Labora­ these parameters tories are expected to test analytes with accuracy and precision and to document the • Identify potential sources of quality control procedures. Accuracy of a quantitative assay is usually measured in laboratory errors and state the terms of an analytical performance, which includes accuracy and precision. Accuracy impact of these errors in the is defined as the extent to which the mean measurement is close to the true value.
    [Show full text]
  • Ascites and Related Disorders
    AscitesAscites andand RelatedRelated DisordersDisorders LuisLuis S.S. Marsano,Marsano, MDMD ProfessorProfessor ofof MedicineMedicine DirectorDirector ofof HepatologyHepatology UniversityUniversity ofof LouisvilleLouisville CausesCauses ofof AscitesAscites Malignant Neoplasia 10% Cardiac Insufficiency 3% Tuberculous Peritonitis Chronic hepatic 2% disease Nephrogenic 81% a scite s (dia lysis) 1% Pancreatic ascites 1% Biliary ascites 1% Others 1% PathophysiologyPathophysiology ofof CirrhoticCirrhotic AscitesAscites Hepatic sinusoidal pressure Activation of hepatic baroreceptors Compensated Peripheral arterial vasodilation with hypervolemia, (normal renin, aldosterone, vasopressin, or norepinephrine) Peripheral arterial vasodilation (“underfilling”) Decompensated Neurally mediated Na+ retention, (with elevated renin, aldosterone, vasopressin, or norepinephrine) ClassificationClassification ofof AscitesAscites SerumSerum--ascitesascites albuminalbumin gradientgradient (SAAG)(SAAG) SAAGSAAG (g/dl)(g/dl) == albuminalbumins –– albuminalbumina GradientGradient >>1.11.1 g/dlg/dl == portalportal hypertensionhypertension Serum globulin > 5 g/dl:: – SAAG correction = (SAAG mean)(0.21+0.208 serum globulin g/dl) AscitesAscites withwith HighHigh SAAGSAAG >>1.11.1 g/dlg/dl == portalportal hypertensionhypertension Cirrhosis Alcoholic Hepatitis Cardiac ascites Massive hepatic metastasis Fulminant hepatic failure Budd-Chiari syndrome Portal vein thrombosis Veno-occlusive disease Acute fatty liver of pregnancy Myxedema Mixed ascites LowLow SAAGSAAG <1.1<1.1
    [Show full text]
  • Hyperchloremia – Why and How
    Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    [Show full text]
  • 1 Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver
    1 1 MOLECULAR PHYSIOLOGY AND PATHOPHYSIOLOGY OF BILIRUBIN HANDLING BY THE BLOOD, LIVER, 2 INTESTINE, AND BRAIN IN THE NEWBORN 3 THOR W.R. HANSEN1, RONALD J. WONG2, DAVID K. STEVENSON2 4 1Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, 5 University of Oslo, Norway 6 2Department of Pediatrics, Stanford University School of Medicine, Stanford CA, USA 7 __________________________________________________________________________________ 8 2 9 I. Introduction 10 II. Bilirubin in the Body 11 A. Bilirubin Chemistry 12 1. Bilirubin structure 13 2. Bilirubin solubility 14 3. Bilirubin isomers 15 4. Heme degradation 16 5. Biliverdin and biliverdin reductase (BVR) 17 B. Bilirubin as an Antioxidant 18 C. Bilirubin as a Toxin 19 1. Bilirubin effects on enzyme activity 20 2. Toxicity of bilirubin conjugates and isomers 21 D. Other Functions/Roles 22 1. Drug displacement by bilirubin 23 2. Bilirubin interactions with the immune system and 24 inflammatory/infectious mechanisms 25 III. The Production of Bilirubin in the Body 26 A. Heme Catabolism and Its Regulation 27 1. Genetic variants in bilirubin production 28 B. The Effect of Hemolysis 29 1. Disorders associated with increased bilirubin production 30 IV. Bilirubin Binding and Transport in Blood 31 V. Bilirubin in the Liver 32 A. Hepatocellular Uptake and Intracellular Processing 33 B. Bilirubin Conjugation 34 1. Genetic variants in bilirubin conjugation 3 35 a. Crigler-Najjar syndrome type I 36 b. Crigler-Najjar syndrome type II 37 c. Gilbert syndrome 38 2. Genetic variants in transporter proteins 39 C. Bilirubin Excretion 40 VI. Bilirubin in the Intestines 41 A.
    [Show full text]
  • Routine Cerebrospinal Fluid (CSF) Analysis
    CHAPTER4 Routine cerebrospinal fluid (CSF) analysis a b a ) F. Deisenhammer, A. Bartos, R. Egg, Albumin CSF/serum ratio (Qalb should be pre- N. E. Gilhus,c G. Giovannoni,d S. Rauer,e ferred to total protein measurement and normal F. Sellebjergf upper limits should be related to patients’ age. Elevated Qalb is a non-specific finding but occurs mainly in bacterial, cryptococcal, and tubercu- Background A great variety of neurological diseases lous meningitis, leptomingeal metastases as well require investigation of the cerebrospinal fluid as acute and chronic demyelinating polyneu- (CSF) to prove the diagnosis or to rule out relevant ropathies. differential diagnoses. Pathological decrease of the CSF/serum glu- cose ratio or an increase in lactate concentration Objectives To evaluate the theoretical background indicates bacterial or fungal meningitis or lep- and provide guidelines for clinical use in rou- tomeningeal metastases. tine CSF analysis including total protein, albumin, Intrathecal immunoglobulin G synthesis is best immunoglobulins, glucose, lactate, cell count, demonstrated by isoelectric focusing followed by cytological staining, and investigation of infec- specific staining. tious CSF. Cellular morphology (cytological staining) should be evaluated whenever pleocytosis is found or Methods Systematic Medline search for the above leptomeningeal metastases or pathological bleed- mentioned variables. Review of appropriate publi- ing is suspected. Computed tomography-negative cations by one or more of the task force members. intrathecal bleeding should be investigated by Grading of evidence and recommendations was bilirubin detection. based on consensus by all task force members. Introduction CSF should be analysed immediately after collec- tion. If storage is needed 12 ml of CSF should The cerebrospinal fluid (CSF) is a dynamic, be partitioned into three to four sterile tubes.
    [Show full text]
  • The Pathophysiology of 'Happy' Hypoxemia in COVID-19
    Dhont et al. Respiratory Research (2020) 21:198 https://doi.org/10.1186/s12931-020-01462-5 REVIEW Open Access The pathophysiology of ‘happy’ hypoxemia in COVID-19 Sebastiaan Dhont1* , Eric Derom1,2, Eva Van Braeckel1,2, Pieter Depuydt1,3 and Bart N. Lambrecht1,2,4 Abstract The novel coronavirus disease 2019 (COVID-19) pandemic is a global crisis, challenging healthcare systems worldwide. Many patients present with a remarkable disconnect in rest between profound hypoxemia yet without proportional signs of respiratory distress (i.e. happy hypoxemia) and rapid deterioration can occur. This particular clinical presentation in COVID-19 patients contrasts with the experience of physicians usually treating critically ill patients in respiratory failure and ensuring timely referral to the intensive care unit can, therefore, be challenging. A thorough understanding of the pathophysiological determinants of respiratory drive and hypoxemia may promote a more complete comprehension of a patient’sclinical presentation and management. Preserved oxygen saturation despite low partial pressure of oxygen in arterial blood samples occur, due to leftward shift of the oxyhemoglobin dissociation curve induced by hypoxemia-driven hyperventilation as well as possible direct viral interactions with hemoglobin. Ventilation-perfusion mismatch, ranging from shunts to alveolar dead space ventilation, is the central hallmark and offers various therapeutic targets. Keywords: COVID-19, SARS-CoV-2, Respiratory failure, Hypoxemia, Dyspnea, Gas exchange Take home message COVID-19, little is known about its impact on lung This review describes the pathophysiological abnormal- pathophysiology. COVID-19 has a wide spectrum of ities in COVID-19 that might explain the disconnect be- clinical severity, data classifies cases as mild (81%), se- tween the severity of hypoxemia and the relatively mild vere (14%), or critical (5%) [1–3].
    [Show full text]
  • Pathophysiology in Pre-Clerkship Curriculum Pathophysiology
    Pathophysiology In Pre-Clerkship Curriculum Pathophysiology • The study of the biologic and physical manifestations of disease as they correlate with the underlying abnormalities and physiologic disturbances. Pathophysiology does not deal directly with the treatment of disease. Rather, it explains the processes within the body that result in the signs and symptoms of a disease. USMLE Steps 1 & 2 • Do not report separate pathophysiology score 2018 NBME Pathology Subject Exam 2017 NBME Pathology Subject Exam Pathophysiology in Pre- Clerkship Curriculum • Minor – Doctoring I – case-based learning – Anatomy – Cellular & Molecular Medicine – Genetics – Cell & Tissue Biology – Physiology – Introduction to Clinical Psychiatry – Microbiology – Neuroscience Pathophysiology in Pre- Clerkship Curriculum • Major – Doctoring II – Practice of Medicine – Pathology – Pharmacology Practice of Medicine • First course objective – Integrate, review, and apply basic science pathophysiology to clinical cases Practice of Med/Doctoring II • Pathophysiology of pelvic inflammatory disease/tubo-ovarian abscess • Pathophysiology of Diabetic peripheral neuropathy • Pathophysiology of pancreatitis • Pathophysiology of diarrhea • Pathophysiology of pneumonia • Pathophysiology of chest pain/acute coronary syndrome Practice of Med/Doctoring II • Pathophysiology of ecchymoses & purpura • Pathophysiology of mysathenia gravis (dropped in 2019) • Renal failure pathophysiology (dropped in 2019) • DKA pathophysiology • Anemia pathophysiology • Discussed in sim lab cases: pathophysiology
    [Show full text]
  • Pleocytosis Is Not Fully Responsible for Low CSF Glucose in Meningitis
    Pleocytosis is not fully responsible for low CSF glucose in meningitis Maxime O. Baud, MD, ABSTRACT PhD Objective: The mechanism of hypoglycorrhachia—low CSF glucose—in meningitis remains Jeffrey R. Vitt, MD unknown. We sought to evaluate the relative contribution of CSF inflammation vs microorganisms Nathaniel M. Robbins, (bacteria and fungi) in lowering CSF glucose levels. MD Methods: We retrospectively categorized CSF profiles into microbial and aseptic meningitis and Rafael Wabl, MD analyzed CSF leukocyte count, glucose, and protein concentrations. We assessed the relation- Michael R. Wilson, MD, ship between these markers using multivariate and stratified linear regression analysis for initial MAS and repeated CSF sampling. We also calculated the receiver operating characteristics of CSF glu- Felicia C. Chow, MD, cose and CSF-to-serum glucose ratios to presumptively diagnose microbial meningitis. MAS Jeffrey M. Gelfand, MD, Results: We found that increasing levels of CSF inflammation were associated with decreased MAS CSF glucose levels in the microbial but not aseptic category. Moreover, elevated CSF protein S. Andrew Josephson, levels correlated more strongly than the leukocyte count with low CSF glucose levels on initial MD (R2 5 36%, p , 0.001) and repeated CSF sampling (R2 5 46%, p , 0.001). Hypoglycorrhachia Steve Miller, MD, PhD (,40 mg/dL) was observed in 50.1% of microbial cases, but only 9.6% of aseptic cases, most of which were neurosarcoidosis. Absolute CSF glucose and CSF-to-serum glucose ratios had similar low sensitivity and moderate-to-high specificity in diagnosing microbial meningitis at thresholds Correspondence to commonly used. Dr. Miller: steve.miller@ucsf.edu Conclusions: The main driver of hypoglycorrhachia appears to be a combination of microbial men- ingitis with moderate to high degrees of CSF inflammation and proteins, suggesting that the pres- ence of microorganisms capable of catabolizing glucose is a determinant of hypoglycorrhachia in meningitis.
    [Show full text]
  • Serum Creatinine Level, a Surrogate of Muscle Mass, Predicts Mortality in Peritoneal Dialysis Patients
    Nephrol Dial Transplant (2013) 28: 2146–2155 doi: 10.1093/ndt/gft213 Advance Access publication 5 June 2013 Serum creatinine level, a surrogate of muscle mass, predicts mortality in peritoneal dialysis patients 1 Jongha Park1,2, Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University 3 Rajnish Mehrotra , of California Irvine, School of Medicine, Orange, CA, USA, Connie M. Rhee1,4, 2Division of Nephrology, Ulsan University Hospital, University of Miklos Z. Molnar1,5,6, Ulsan College of Medicine, Ulsan, Republic of Korea, 3Harborview Medical Center, University of Washington, Seattle, WA, 1,7 Lilia R. Lukowsky , USA, Sapna S. Patel1,8, 4Division of Nephrology, Brigham and Women’s Hospital, Boston, MA, USA, Allen R. Nissenson9, 5Institute of Pathophysiology, Semmelweis University, Budapest, 7,8,10 Joel D. Kopple , Hungary, Csaba P. Kovesdy11,12 6Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada, and Kamyar Kalantar-Zadeh1,7 7UCLA Fielding School of Public Health, Los Angeles, CA, USA, 8Division of Nephrology and Hypertension, Harbor-UCLA Medical Center, Torrance, CA, USA, 9DaVita Inc., El Segundo, CA, USA, 10David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 11Division of Nephrology, Memphis Veterans Affairs Medical Center, ORIGINAL ARTICLE Memphis, TN, USA and 12Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA Correspondence and offprint requests to: Keywords: creatinine, malnutrition, mortality, muscle, perito- Kamyar Kalantar-Zadeh; E-mail: kkz@uci.edu neal dialysis {HR 1.36 [95% confidence interval (95% CI) 1.19–1.55] and ABSTRACT 1.19 (1.08–1.31), respectively} whereas patients with serum Cr levels of 10.0–11.9 mg/dL, 12.0–13.9 mg/dL and ≥14.0 Background.
    [Show full text]
  • Characteristics of Cerebrospinal Fluid in Tuberculous Meningitis Patients with Hydrocephalus Astrid Tamara Maajid Budiman,1 Nida Suraya,2 Ahmad Faried,3 Ida Parwati2
    Original Article Characteristics of Cerebrospinal Fluid in Tuberculous Meningitis Patients with Hydrocephalus Astrid Tamara Maajid Budiman,1 Nida Suraya,2 Ahmad Faried,3 Ida Parwati2 1Faculty of Medicine, Universitas Padjadjaran 2Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin General Hospital, Bandung 3Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin General Hospital, Bandung Abstract Objective: meningitis (TBM) with hydrocephalus patients as diagnostic criteria of TBM. To describe cerebrospinal fluid (CSF) characteristics in tuberculous Methods: A cross-sectional using retrospective method was applied in this study by obtaining medical records of TBM with hydrocephalus patients that were treated at Department of Neurosurgery Dr. Hasan Sadikin General Hospital, Bandung from January 2014–September 2016. Results: Sixty one records were included in the study. Patient characteristics and differential count, protein, and glucose were recorded and descriptively such as age, gender, and CSF laboratory features such as color and clarity, cells 3 with analyzed.lymphocyte The predominance majority of CSF (median: macroscopic 76%). appearance Increased protein was seen from to benormal clear (88%) and colorless (88%). Median for CSF cell count was 25 cells/mm value range was seen in CSF (median: 50 mg/dL) while the mean for CSF glucose in this study remained in its normal value range (mean: 58.9±26.68 mg/dL)Conclusions: with lower CSF to blood glucose ratio (mean: 0.41±0.27). Received: November 2, 2017 Clear CSF with colorless appearance, lymphocyte pleocytosis, highNeurosurgery, protein level, Dr. Hasanand low Sadikin CSF glucose General as Hospital, well as blood Bandung. glucose ratio remain Revised: typical CSF characteristics of TBM patients found at the Department of Keywords: MayAccepted: 15, 2018 pISSN: 2302-1381; eISSN: 2338-4506; http://doi.org/10.15850/ijihs.v6n2.1129 IJIHS.
    [Show full text]
  • Gas Exchange and Ventilation–Perfusion Relationships in the Lung
    ERJ Express. Published on July 25, 2014 as doi: 10.1183/09031936.00037014 REVIEW IN PRESS | CORRECTED PROOF Gas exchange and ventilation–perfusion relationships in the lung Johan Petersson1,2 and Robb W. Glenny3,4 Affiliations: 1Section of Anaesthesiology and Intensive Care Medicine, Dept of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 2Dept of Anaesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden. 3Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA. 4Dept of Physiology and Biophysics, University of Washington, Seattle, WA, USA. Correspondence: Johan Petersson, Dept of Anaesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden. E-mail: johan.petersson@karolinska.se ABSTRACT This review provides an overview of the relationship between ventilation/perfusion ratios and gas exchange in the lung, emphasising basic concepts and relating them to clinical scenarios. For each gas exchanging unit, the alveolar and effluent blood partial pressures of oxygen and carbon dioxide (PO2 and PCO2) are determined by the ratio of alveolar ventilation to blood flow (V9A/Q9) for each unit. Shunt and low V9A/Q9 regions are two examples of V9A/Q9 mismatch and are the most frequent causes of hypoxaemia. Diffusion limitation, hypoventilation and low inspired PO2 cause hypoxaemia, even in the absence of V9A/Q9 mismatch. In contrast to other causes, hypoxaemia due to shunt responds poorly to supplemental oxygen. Gas exchanging units with little or no blood flow (high V9A/Q9 regions) result in alveolar dead space and increased wasted ventilation, i.e. less efficient carbon dioxide removal.
    [Show full text]