Chloride and Its Clinical Implications in Today's Clinical Practice: Not an Orphan Electrolyte

Total Page:16

File Type:pdf, Size:1020Kb

Chloride and Its Clinical Implications in Today's Clinical Practice: Not an Orphan Electrolyte rology & h T ep h e Goel, J Nephrol Ther 2015, 5:6 N r f a o p l e a u DOI: 10.4172/2161-0959.1000223 n t r i c u s o J ISSN: 2161-0959 Journal of Nephrology & Therapeutics Review Article Open Access Chloride and its Clinical Implications in Today’s Clinical Practice: Not an Orphan Electrolyte Narender Goel* Middletown Medical PC, 111, Maltese Drive, Middletown NY, USA; Consultant at Orange Regional Medical Center, NY, USA; Adjunct Clinical Assistant Professor (Internal Medicine and Nephrology) at Touro College of Osteopathic Medicine, New York, USA Abstract Though chloride is the predominant extracellular anion, it is mostly seen just as an anion accompanying sodium and hardly receives attention in textbooks. But independent evaluation of serum chloride may unearth several clinical and acid-base disorders. It is used in formulas to estimate serum anion gap, urine anion gap, and strong ion difference (Stewart method). Several critical functions of a cell such as maintenance of cell volume, neutralization of H+ in lysosomal vesicles, epithelial fluid transport, change in cell membrane potential and ligand-gated transmission in the post-synaptic membrane utilize chloride channels. In addition, chloride forms an integral part of anion exchanger proteins coded by SLC26A gene family. Chloride is an essential component of intravenous fluids used in day-to-day clinical practice. The role and contribution of chloride rich fluids and resulting acidosis in causing inferior outcomes in sepsis, renal vasoconstriction, and acute kidney injury has been debated. Numerous genetic diseases are known to be related with chloride channels and proteins abnormalities. In the following review, I would like to bring much needed attention towards importance of chloride in human physiology. The following hypothetical clinical case will be just a spark for fiery chloride. Keywords: Hyperchloremia; Hypochloremia; Anion exchanger; receives attention in textbooks. But, independent evaluation of serum Chloride channel chloride may unearth several clinical and acid-base disorders. Chloride significantly contributes to plasma tonicity and is used in formulas to Introduction estimate serum anion gap, urine anion gap, and strong ion difference (Stewart method) [3] which is less popular for use in clinical practice Case 1: An 18 years old male was brought to ER in an obtunded state. due to its complex interpretations. He had an alcoholic smell on his breath and was hemodynamically stable with a blood pressure (BP) of 110/60 mmHg. His physical examination Urine Anion Gap = urine [Na+ + K+] – Cl– ------------------ (eq.4) was unremarkable except for him being drowsy. Preliminary laboratory Strong ion difference = (Na+ + K+ + Mg++ + Ca++) – (Cl– + lactate + results were as follows; Serum sodium 139 meq/L, potassium 5 meq/L, other strong anions) ------------------ (eq.5) bicarbonate 22 meq/L, chloride 87 meq/L and glucose of 90 mg/ dL. Blood alcohol level was undetectable and urine microscopy was Na+, K+, Cl–, HCO3– in meq/L significant for oxalate crystals. A diagnosis of poisoning with anti- The role of chloride in urine anion gap measurements is unique freeze (ethylene glycol) was made. + and indirect as chloride here is serving as a surrogate marker of NH4 In this patient most of these laboratory information seems excretion in urine. A positive urine anion gap in the presence of normal however serious acid-base disorder can be easily overlooked metabolic acidosis is often abnormal and points towards low urinary + if attention is not paid towards the remarkably low chloride value NH4 excretion, thus impaired urinary acid excretion. which is suggesting here a complex acid base disorder with high anion gap metabolic acidosis (serum anion gap of 30) and superimposed Chloride Physiology metabolic alkalosis (delta gap of 18 and delta ratio of 10). The high During early experiments, hyperchloremia was found to be anion gap pointed towards unmeasured anions which were later found associated with renal vasoconstriction and fall in glomerular filtration to be oxalic acid, the metabolite of ethylene glycol. rate that was independent of renal sympathetic nervous activity [4]. Serum Anion Gap = serum Na+ – [Cl– + HCO3–] ---------------- Now it is known that functions and physiochemical actions of chloride -- (eq.1) are mediated via chloride channels (ClC), which participates in several critical functions of a cell such as maintenance of cell volume (volume Delta gap= Measured anion gap – Normal anion gap – sensitive ClC), neutralization of H+ in lysosomal vesicles (ClC3, ClC5, Normal [HCO3–] – Measured [HCO3–] ------------------ (eq.2) ClC7), epithelial fluid transport (CFTR, ClC-Ka, ClC-Kb), change in cell membrane potential (ClC1, ClC2, calcium-ClC) and ligand gated ------- (eq.3) *Corresponding author: Narender Goel, Middletown Medical PC, 111, Maltese Na+, Cl– and HCO3– in meq/L Drive, Middletown NY-10940, USA, Tel: +1 845-342-4774; Fax: +1 845-343-8116; E-mail: [email protected] Chloride is the predominant extracellular anion with normal Received: October 01, 2015; Accepted: October 29, 2015; Published: November 05, 2015 concentration ranging from 94-111 meq/L [1]. It is commonly ingested as table salt (sodium chloride). In early experiments, it was determined Citation: Goel N (2015) Chloride and its Clinical Implications in Today’s Clinical Practice: Not an Orphan Electrolyte. J Nephrol Ther 5: 223. doi:10.4172/2161- that chloride’s total body concentration was 30 meq/Kg body weight 0959.1000223 and intracellular concentration was 24.8 meq/L of cell water which Copyright: © 2015 Goel N. This is an open-access article distributed under the was 29.7% (range 19.8-40.4%) of total body chloride [2]. Chloride terms of the Creative Commons Attribution License, which permits unrestricted is mostly seen just as an anion accompanying sodium and hardly use, distribution, and reproduction in any medium, provided the original author and source are credited. J Nephrol Ther Volume 5 • Issue 6 • 1000223 ISSN: 2231-0959 JNT, an open access journal Citation: Goel N (2015) Chloride and its Clinical Implications in Today’s Clinical Practice: Not an Orphan Electrolyte. J Nephrol Ther 5: 223. doi:10.4172/2161-0959.1000223 Page 2 of 4 transmission in the post-synaptic membrane (GABA and glycine anion exchanger-1) plays crucial role in red blood cells in maintaining channels) [5-7]. In the mouse models, function of aquaporin-6 is also electro-neutrality [11]. Another unique chloride channel is cystic shown to involve chloride transport [7]. Macula densa cells perform fibrosis transmembrane conductance regulator (CFTR) that is a located their crucial function of tubuloglomerular feedback by sensing chloride in apical membrane of epithelia and involved in transepithelial salt concentration in tubular fluid [8]. Chloride also forms an integral transport, fluid flow, and ion concentration [12]. Parchorin is a recently part of SLC26A anion exchanger protein. Chloride is also an essential discovered intracellular chloride channel in water secreting cells such component of intravenous fluids used in day-to-day clinical practice as salivary glands, lachrymal glands, pancreas, cochlea and kidneys and it concentration in different replacement fluids (mmol/L) is as whereby it plays a critical role in water secretion by regulation of follows [1]: chloride transport. Prestin is another SLC25A5 gene encoded chloride/ bicarbonate anion exchanger protein and present on outer hair cells of 4% Albumin= 128; Normal saline (0.9%) = 154, Half normal saline cochlea [13]. (0.45%) = 77, Ringers lactate= 111, PlasmaLyte= 98, Hydroxyethyl starch= range 110-154 Causes of chloride disorders Finally, the role and contribution of chloride rich fluids and Hypochloremia: Low serum chloride is often associated with resulting acidosis in causing inferior outcomes in sepsis [3], renal metabolic alkalosis that could be due to volume loss from gastric vasoconstriction [3] and acute kidney injury [9] has been debated [3]. content as gastric fluid is rich in chloride (Cl–) along with proton (H+) both of which together forms hydrochloric acid [3] or from kidneys Handling of chloride by the kidneys such as due to diuretics or salt wasting nephropathies (Bartter and Approximately 21000 meq of chloride is filtered everyday of which Gitelman Syndrome) [14]. >99% is absorbed (55% in proximal tubule, 25-35% in thick ascending In these cases, chloride depletion also plays a crucial role in loop (TAL) of Henle and rest in distal tubule) and only 100-250 meq is maintaining metabolic alkalosis. Decreased delivery of chloride to the excreted every day [10]. Once in proximal tubular lumen, chloride is macula densa stimulates renin release which activates angiotensin and reabsorbed actively via anion exchanger [SLC26A6] (chloride-formate, aldosterone and thereby promotes proton excretion in the distal tubule. chloride-hydroxyl, chloride-oxalate exchanger) on luminal side and + - The lower chloride concentration in the tubular lumen also impairs leave the cells via K Cl co-transporter and chloride selective channels – – activity of luminal Cl -HCO3 exchanger in type B intercalated cell and [10]. Chloride is also reabsorbed passively across tight junctions in – + – leads to reduced excretion of HCO3 , exacerbating metabolic alkalosis proximal tubule [10]. In the proximal tubule, ClC5 (H /Cl antiporter) further. helps to secretes H+ into endosomes and maintain low pH that is necessary for protein degradation [5-7]. Hypochloremia and
Recommended publications
  • The Association Between Hypocalcemia and Outcome in COVID-19 Patients: a Retrospective Study
    The Association Between Hypocalcemia and Outcome in COVID-19 Patients: a Retrospective Study Bhagwan Singh Patidar All India Institute of Medical Sciences Tapasyapreeti Mukhopadhayay All India Institute of Medical Sciences Arulselvi Subramanian ( [email protected] ) All India Institute of Medical Sciences https://orcid.org/0000-0001-7797-6683 Riicha Aggarwal All India Institute of Medical Sciences Kapil Dev Soni All India Institute of Medical Sciences Neeraj Nischal All India Institute of Medical Sciences Debasis Sahoo All India Institute of Medical Sciences Surbhi Surbhi All India Institute of Medical Sciences Ravindra Mohan Pandey All India Institute of Medical Sciences Naveet Wig All India Institute of Medical Sciences Rajesh Malhotra All India Institute of Medical Sciences Anjan Trikha All India Institute of Medical Sciences Research Article Keywords: Calcium, Coronavirus, Laboratory parameters, Mortality, NLR, Pandemic Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-302159/v1 Page 1/14 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/14 Abstract Background: Calcium has been shown to have a vital role in the pathophysiology of SARS-CoV and MERS-CoV diseases but less is known about hypocalcemia in COVID-19 patients and its association with the disease severity and the nal outcome. Therefore, this study was conducted with an aim to assess the clinical features in the COVID-19 patients having hypocalcemia and to observe its impact on COVID- 19 disease severity and nal outcome. Method: In this retrospective study, consecutive COVID-19 patients of all age groups were enrolled.
    [Show full text]
  • Cerebrospinal Fluid in Critical Illness
    Cerebrospinal Fluid in Critical Illness B. VENKATESH, P. SCOTT, M. ZIEGENFUSS Intensive Care Facility, Division of Anaesthesiology and Intensive Care, Royal Brisbane Hospital, Brisbane, QUEENSLAND ABSTRACT Objective: To detail the physiology, pathophysiology and recent advances in diagnostic analysis of cerebrospinal fluid (CSF) in critical illness, and briefly review the pharmacokinetics and pharmaco- dynamics of drugs in the CSF when administered by the intravenous and intrathecal route. Data Sources: A review of articles published in peer reviewed journals from 1966 to 1999 and identified through a MEDLINE search on the cerebrospinal fluid. Summary of review: The examination of the CSF has become an integral part of the assessment of the critically ill neurological or neurosurgical patient. Its greatest value lies in the evaluation of meningitis. Recent publications describe the availability of new laboratory tests on the CSF in addition to the conventional cell count, protein sugar and microbiology studies. Whilst these additional tests have improved our understanding of the pathophysiology of the critically ill neurological/neurosurgical patient, they have a limited role in providing diagnostic or prognostic information. The literature pertaining to the use of these tests is reviewed together with a description of the alterations in CSF in critical illness. The pharmacokinetics and pharmacodynamics of drugs in the CSF, when administered by the intravenous and the intrathecal route, are also reviewed. Conclusions: The diagnostic utility of CSF investigation in critical illness is currently limited to the diagnosis of an infectious process. Studies that have demonstrated some usefulness of CSF analysis in predicting outcome in critical illness have not been able to show their superiority to conventional clinical examination.
    [Show full text]
  • Severe Metabolic Acidosis in a Patient with an Extreme Hyperglycaemic Hyperosmolar State: How to Manage? Marloes B
    Clinical Case Reports and Reviews Case Study ISSN: 2059-0393 Severe metabolic acidosis in a patient with an extreme hyperglycaemic hyperosmolar state: how to manage? Marloes B. Haak, Susanne van Santen and Johannes G. van der Hoeven* Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands Abstract Hyperglycaemic hyperosmolar state (HHS) and diabetic ketoacidosis (DKA) are often accompanied by severe metabolic and electrolyte disorders. Analysis and treatment of these disorders can be challenging for clinicians. In this paper, we aimed to discuss the most important steps and pitfalls in analyzing and treating a case with extreme metabolic disarrangements as a consequence of an HHS. Electrolyte disturbances due to fluid shifts and water deficits may result in potentially dangerous hypernatriema and hyperosmolality. In addition, acid-base disorders often co-occur and several approaches have been advocated to assess the acid-base disorder by integration of the principles of mass balance and electroneutrality. Based on the case vignette, four explanatory methods are discussed: the traditional bicarbonate-centered method of Henderson-Hasselbalch, the strong ion model of Stewart, and its modifications ‘Stewart at the bedside’ by Magder and the simplified Fencl-Stewart approach. The four methods were compared and tested for their bedside usefulness. All approaches gave good insight in the metabolic disarrangements of the presented case. However, we found the traditional method of Henderson-Hasselbalch and ‘Stewart at the bedside’ by Magder most explanatory and practical to guide treatment of the electrolyte disturbances and in exploring the acid-base disorder of the presented case. Introduction This is accompanied by changes in pCO2 and bicarbonate (HCO₃ ) levels, depending on the cause of the acid-base disorder.
    [Show full text]
  • Versus High-Chloride-Containing Hypertonic Solution for the Treatment
    Sadan et al. Journal of Intensive Care (2020) 8:32 https://doi.org/10.1186/s40560-020-00449-0 RESEARCH Open Access Low-chloride- versus high-chloride- containing hypertonic solution for the treatment of subarachnoid hemorrhage– related complications: The ACETatE (A low ChloriE hyperTonic solution for brain Edema) randomized trial Ofer Sadan1*, Kai Singbartl2, Jacqueline Kraft1, Joao McONeil Plancher1, Alexander C. M. Greven3, Prem Kandiah1, Cederic Pimentel1, C. L. Hall1, Alexander Papangelou4, William H. Asbury5, John J. Hanfelt6 and Owen Samuels1 Abstract Background: Recent reports have demonstrated that among patients with subarachnoid hemorrhage (SAH) treated with hypertonic NaCl, resultant hyperchloremia has been associated with the development of acute kidney injury (AKI). We report a trial comparing the effect of two hypertonic solutions with different chloride contents on the resultant serum chloride concentrations in SAH patients, with a primary outcome aimed at limiting chloride elevation. Methods: A low ChloridE hyperTonic solution for brain Edema (ACETatE) trial is a single-center, double-blinded, double-dummy, randomized pilot trial comparing bolus infusions of 23.4% NaCl and 16.4% NaCl/Na-acetate for the treatment of cerebral edema in patients with SAH. Randomization occurred when patients developed hyperchloremia (serum Cl− ≥ 109 mmol/L) and required hyperosmolar treatment. Results: We enrolled 59 patients, of which 32 developed hyperchloremia and required hyperosmolar treatment. 15 patients were randomized to the 23.4% NaCl group, and 17 patients were randomized to the 16.4% NaCl/Na- acetate group. Although serum chloride levels increased similarly in both groups, the NaCl/Acetate group showed a significantly lower Cl− load at the end of the study period (978mEq vs.
    [Show full text]
  • Clinical Physiology Aspects of Chloremia in Fluid Therapy: a Systematic Review David Astapenko1,2* , Pavel Navratil2,3, Jiri Pouska4,5 and Vladimir Cerny1,2,6,7,8,9
    Astapenko et al. Perioperative Medicine (2020) 9:40 https://doi.org/10.1186/s13741-020-00171-3 REVIEW Open Access Clinical physiology aspects of chloremia in fluid therapy: a systematic review David Astapenko1,2* , Pavel Navratil2,3, Jiri Pouska4,5 and Vladimir Cerny1,2,6,7,8,9 Abstract Background: This systematic review discusses a clinical physiology aspect of chloride in fluid therapy. Crystalloid solutions are one of the most widely used remedies. While generally used in medicine for almost 190 years, studies focused largely on their safety have only been published since the new millennium. The most widely used solution, normal saline, is most often referred to in this context. Its excessive administration results in hyperchloremic metabolic acidosis with other consequences, including higher mortality rates. Methods: Original papers and review articles eligible for developing the present paper were identified by searching online in the electronic MEDLINE database. The keywords searched for included hyperchloremia, hypochloremia, and compound words containing the word “chloride,” infusion therapy, metabolic acidosis, renal failure, and review. Results: A total of 21,758 papers published before 31 May 2020 were identified; of this number, 630 duplicates were removed from the list. Upon excluding articles based on their title or abstract, 1850 papers were screened, of which 63 full-text articles were assessed. Conclusions: According to the latest medical concepts, dyschloremia (both hyperchloremia and hypochloremia) represents a factor indisputably having a negative effect on selected variables of clinical outcome. As infusion therapy can significantly impact chloride homeostasis of the body, the choice of infusion solutions should always take into account the potentially adverse impact of chloride content on chloremia and organ function.
    [Show full text]
  • THE EFFECT of POTASSIUM CHLORIDE on HYPONATREMIA1 by JOHN H
    THE EFFECT OF POTASSIUM CHLORIDE ON HYPONATREMIA1 By JOHN H. LARAGH2 (From the Department of Medicine, College of Physicians and Surgeons, Columbia University; and the Presbyterian Hospital in the City of New York) (Submitted for publication August 31, 1953; accepted February 10, 1954) In cardiac edema as well as in various other tration might favorably influence disturbances in states characterized by excessive retention of fluid sodium metabolism manifested by pathologic dis- there is observed frequently an abnormally low con- tribution of sodium and potassium within the body. centration of sodium in the serum and extracellular Two recent studies have served to emphasize this fluid (1, 2). Rigorous sodium restriction, mer- important relationship between sodium and potas- curial diuretics, and cation exchange resins may sium. In vivo, with potassium depletion there is exaggerate or produce this tendency to hypo- a movement of sodium ions into cells and an associ- tonicity. Sodium administration often enhances ated extracellular alkalosis. This intracellular so- accumulation of fluid, without increasing its to- dium can then be mobilized by potassium adminis- nicity, and hypertonic sodium chloride, though tration (11). In vitro it has been shown that po- effective at times, may be neither beneficial nor tassium transport is dependent upon energy of safe (3). aerobic oxidation. If the cell is injured or meta- Because of the shortcomings of these various bolically inhibited potassium fails to accumulate therapies and because hyponatremia per se may and is replaced by an influx of sodium and water play a role in the production of adverse symptoms, (12). it seemed desirable to search for another diuretic Accordingly, potassium chloride (KCl) was agent which might promote the loss of excessive given to an edematous, hyponatremic cardiac body water without aggravating disturbances in patient with the hope of effecting water diuresis.
    [Show full text]
  • Renal Tubular Acidosis in Children: State of the Art, Diagnosis and Treatment
    www.medigraphic.org.mx Bol Med Hosp Infant Mex 2013;70(3):178-193 REVIEW ARTICLE Renal tubular acidosis in children: state of the art, diagnosis and treatment Ricardo Muñoz-Arizpe,1 Laura Escobar,2 Mara Medeiros3 ABSTRACT Overdiagnosis of renal tubular acidosis (RTA) has been recently detected in Mexican children, perhaps due to diagnostic errors as well as due to a lack of knowledge regarding the pathophysiology and molecular biochemistry involved in this illness. The objective of the present study is to facilitate the knowledge and diagnosis of RTA, a clinical condition infrequently seen worldwide. RTA is an alteration of the acid-base equilibrium due to a bicarbonate wasting in the proximal renal tubules [proximal RTA, (pRTA) or type 2 RTA] or due to a distal nephron hy- drogen ion excretion defect [distal RTA (dRTA) or type 1 RTA]. Hyperkalemic, or type 4 RTA, is due to alterations in aldosterone metabolism. RTA may be primary, secondary, acquired or hereditary and frequently presents secondary to an array of systemic diseases, usually accom- panied by multiple renal tubular defects. The main defect occurs in the transmembrane transporters such as carbonic anhydrase (CA I and + - - + - II), H -ATPase, HCO3 /Cl (AE1) exchanger and Na /HCO3 (NBCe1) cotransporter. Diagnosis should include the presence of hyperchloremic metabolic acidosis with normal serum anion gap (done in an arterial or arterialized blood sample), lack of appetite, polyuria, thirst, growth failure, and rickets; nephrocalcinosis and renal stones (in dRTA); abnormal urine anion gap and abnormal urine/serum pCO2 gradient. Diagnosis of a primary systemic disease must be made in cases of secondary RTA.
    [Show full text]
  • DKA Protocol - Insulin Deficiency - Pregnancy
    Diabetic Ketoacidosis in Pregnancy Diagnosis of DKA: Initial STAT labs include • CBC with diff • Serum electrolytes • BUN • Creatinine • Glucose • Arterial blood gases • Bicarbonate • Urinalysis • Lactate • Serum ketones • Calculation of the Anion Gap serum anion gap = serum sodium – (serum chloride + bicarbonate) • Electrocardiogram Treatment Protocol for Diabetic Ketoacidosis Reviewed 5/2/2017 1 Updated 05/02/17 DKA/HHS Pathway Phase 1 (Adult) DKA Diagnostic Criteria: Blood glucose >250 mg/dl *PREGNANCY Arterial pH <7.3 Utilize OB DKA order set Phase 1 Bicarbonate ≤18 mEq/l When glucose reaches 200mg/dL, Initiate OB Anion Gap Acidosis DKA Phase 2 Moderate ketonuria or ketonemia Glucose goals 100 -150mg/dL OB DKA Phase 2 1. Start IV fluids (1 L of 0.9% NaCl per hr initially) Look for the Cause 2. If serum K+ is <3.3 mEq/L hold insulin - Infection/Inflammation (PNA, UTI, Give 40 mEq/h until K ≥ 3.3 mEq/L pancreatitis, cholecystitis) 3. Initiate DKA Order Set Phase I ( *In PREGNANCY utilize OB DKA - Ischemia/Infarction (myocardial, cerebral, gut) order set ) - Intoxication (EtOH, drugs) 4. Start insulin 0.14 units/kg/hr IV infusion (calculate dose) - Iatrogenic (drugs, lack of insulin) RN will titrate per DKA protocol - Insulin deficiency - Pregnancy IVF Insulin Potassium Bicarbonate + Determine hydration status Initiate and If initial serum K is Assess need for bicarbonate continue insulin gtt <3.3 mEq/L, hold until serum insulin and give 40 + glucose reaches mEq K per h (2/3 250 mg/dl. KCL and 1/3 KP0 ) Hypovolemic Mild Cardiogenic 4 pH <6.9 pH >7.0 shock hypotension shock RN will titrate per until K ≥ 3.3 mEq/L protocol to achieve target.
    [Show full text]
  • Basic Skills in Interpreting Laboratory Data, 5Th Edition
    CHAPTER 1 DEFINITIONS AND CONCEPTS KAREN J. TIETZE This chapter is based, in part, on the second edition chapter titled “Definitions and Concepts,” which was written by Scott L. Traub. Objectives aboratory testing is used to detect disease, guide treatment, monitor response Lto treatment, and monitor disease progression. However, it is an imperfect sci­ ence. Laboratory testing may fail to identify abnormalities that are present (false After completing this chapter, negatives [FNs]) or identify abnormalities that are not present (false positives, the reader should be able to [FPs]). This chapter defines terms used to describe and differentiate laboratory • Differentiate between accuracy tests and describes factors that must be considered when assessing and applying and precision laboratory test results. • Distinguish between quantitative, qualitative, and semiqualitative DEFINITIONS laboratory tests Many terms are used to describe and differentiate laboratory test characteristics and • Define reference range and identify results. The clinician should recognize and understand these terms before assessing factors that affect a reference range and applying test results to individual patients. • Differentiate between sensitivity and Accuracy and Precision specificity, and calculate and assess Accuracy and precision are important laboratory quality control measures. Labora­ these parameters tories are expected to test analytes with accuracy and precision and to document the • Identify potential sources of quality control procedures. Accuracy of a quantitative assay is usually measured in laboratory errors and state the terms of an analytical performance, which includes accuracy and precision. Accuracy impact of these errors in the is defined as the extent to which the mean measurement is close to the true value.
    [Show full text]
  • Ascites and Related Disorders
    AscitesAscites andand RelatedRelated DisordersDisorders LuisLuis S.S. Marsano,Marsano, MDMD ProfessorProfessor ofof MedicineMedicine DirectorDirector ofof HepatologyHepatology UniversityUniversity ofof LouisvilleLouisville CausesCauses ofof AscitesAscites Malignant Neoplasia 10% Cardiac Insufficiency 3% Tuberculous Peritonitis Chronic hepatic 2% disease Nephrogenic 81% a scite s (dia lysis) 1% Pancreatic ascites 1% Biliary ascites 1% Others 1% PathophysiologyPathophysiology ofof CirrhoticCirrhotic AscitesAscites Hepatic sinusoidal pressure Activation of hepatic baroreceptors Compensated Peripheral arterial vasodilation with hypervolemia, (normal renin, aldosterone, vasopressin, or norepinephrine) Peripheral arterial vasodilation (“underfilling”) Decompensated Neurally mediated Na+ retention, (with elevated renin, aldosterone, vasopressin, or norepinephrine) ClassificationClassification ofof AscitesAscites SerumSerum--ascitesascites albuminalbumin gradientgradient (SAAG)(SAAG) SAAGSAAG (g/dl)(g/dl) == albuminalbumins –– albuminalbumina GradientGradient >>1.11.1 g/dlg/dl == portalportal hypertensionhypertension Serum globulin > 5 g/dl:: – SAAG correction = (SAAG mean)(0.21+0.208 serum globulin g/dl) AscitesAscites withwith HighHigh SAAGSAAG >>1.11.1 g/dlg/dl == portalportal hypertensionhypertension Cirrhosis Alcoholic Hepatitis Cardiac ascites Massive hepatic metastasis Fulminant hepatic failure Budd-Chiari syndrome Portal vein thrombosis Veno-occlusive disease Acute fatty liver of pregnancy Myxedema Mixed ascites LowLow SAAGSAAG <1.1<1.1
    [Show full text]
  • Problem-Based Review: a Patient with Metabolic Acidosis
    Acute Medicine 2012 11(4): 251-256 251 Trainee Section Problem-Based Review: A patient 251 with metabolic acidosis saf R Allan & C Foster Abstract Metabolic acidosis is a common metabolic derangement present in the acute medical patient. A thorough and structured investigative approach is required as there are many causes and management is reliant on identifying these. In particular calculation of the anion gap with correction for albumin level and use of the delta ratio can be helpful in complex cases especially in patients where a combination of metabolic derangements may be present. Keywords metabolic acidosis, anion gap, delta ratio, renal tubular acidosis, bicarbonate Key points • Calculation of the anion gap is crucial in identifying the cause of metabolic acidosis. • Metabolic acidosis is often multi-factorial and the delta ratio calculation can be useful in identifying situations where a normal gap acidosis coexists with a raised anion gap cause. • Identification of the specific cause(s) of metabolic acidosis is vital as this will usually guide treatment. • Bicarbonate treatment has a role in some cases but adverse effects should be considered. Case Vignette Although the anion gap calculation will narrow A 37 year old male with no past medical history presents our differential (Table 2), many possible explanations to the acute medical unit (AMU) with a history of general for the acidosis remain, especially when the gap is deterioration in health over the last 8 months. He has lost 10 high. The mnemonic MUDPILERS (Methanol, kg of weight and has severe fatigue. More recently he describes a Uraemia, Diabetic Ketoacidosis or other causes Table 1.
    [Show full text]
  • PHAR 503 Exam 2
    PHAR 503 Exam 2 Rho Chi Acid-Base Disorders Which medication would most likely NOT lead to a metabolic alkalosis? A. Loop Diuretic B. Thiazide Diuretic C. Desmopressin D. Citrate Which medication would most likely NOT lead to a metabolic alkalosis? A. Loop Diuretic B. Thiazide Diuretic C. Desmopressin D. Citrate Diuretics increase loss of H+, vomiting, hypokalemia, citrate is metabolized to HCO3- A patient suffering from an acute panic attack might be at risk for developing: A. Respiratory alkalosis B. Metabolic alkalosis C. Respiratory Acidosis D. Metabolic Acidosis A patient suffering from an acute panic attack might be at risk for developing: A. Respiratory alkalosis B. Metabolic alkalosis C. Respiratory Acidosis D. Metabolic Acidosis Hyperventilating -> blowing off CO2 (acid) If you have a patient who is experiencing a respiratory acidosis, which of the following sets of labs would most likely match the patient? A. pH: 7.41, HCO3-: 20 B. pH: 7.35, CO2: 52 C. pH: 7.35, HCO3-: 20 D. pH: 7.45, CO2: 32 If you have a patient who is experiencing a respiratory acidosis, which of the following sets of labs would most likely match the patient? A. pH: 7.41, HCO3-: 20 B. pH: 7.35, CO2: 52 C. pH: 7.35, HCO3-: 20 D. pH: 7.45, CO2: 32 Metabolic: HCO3- abnormalities, respiratory: PaCO2 What is the normal range for PaCO2? What is the normal range for HCO3-? What is the normal range for PaCO2? 35-45 (40!) What is the normal range for HCO3-? 22-26 (24!) ROME Respiratory Opposite: PaCo2 and pH go in opposite directions Metabolic Equal: HCO3- and pH go in the same direction Which of the following would NOT cause a metabolic acidosis? A.
    [Show full text]