Pre-Publication Accepted Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Publication Accepted Manuscript Taras Banakh, Alex Ravsky Each regular paratopological group is completely regular Proceedings of the American Mathematical Society DOI: 10.1090/proc/13318 Accepted Manuscript This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proof- read, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a \Recently Published Article" before being placed in an issue. That electronically published article will become the Version of Record. This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record. The Version of Record is accessible to everyone five years after publication in an issue. EACH REGULAR PARATOPOLOGICAL GROUP IS COMPLETELY REGULAR TARAS BANAKH AND ALEX RAVSKY Abstract. We prove that a semiregular topological space X is completely regular if and only if its topology is generated by a normal quasi-uniformity. This characterization implies that each regular paratopological group is completely regular. This resolves an old problem in the theory of paratopo- logical groups, which stood open for about 60 years. Also we define a natural uniformity on each paratopological group and using this uniformity prove that each (first countable) Hausdorff paratopo- logical group is functionally Hausdorff (and submetrizable). This resolves another two known open problems in the theory of paratopological groups. According to a classical result of Pontryagin, for topological groups all separation axioms between T0 and T 1 are equivalent. For paratopological groups this equivalence does not hold anymore. We 3 2 recall that a paratopological group is a group G endowed with a topology making the group operation continuous. The additive group of real numbers R endowed with the topology τ0 = f;; Rg [ f(a; 1): a 2 Rg is an example of a paratopological group satisfying the separation axiom T0 but not T1. On the other hand, the topology τ1 = f;g [ fU ⊂ R : 9a 2 R (a; 1) ⊂ Ug turns the group R into a paratopological group satisfying the separation axiom T1 but not T2. Finally, the plane R×R endowed with the topology generated by the base B = f(a; b)g [ ((a; a + ") × (b; b + ")) : a; b 2 R; " > 0g is an example of a paratopological group which is Hausdorff but not regular (so, it satisfies the separation axiom T2 but not T3). These simple examples show that in contrast to topological groups, for paratopological groups the separation axioms T0;T1;T2;T3 are pairwise non-equivalent. For long time, the problem of the equivalence of the separation axioms T3 and T 1 (i.e., the 3 2 regularity and complete regularity) for paratopological groups remained unsolved (see [12, Question 1.2], [2, Problem 1.3.1], and [16, Problem 2.1]). Discussing this problem in the survey [16, x2], Tkachenko writes that it is \open for about 60 years" and \the authority of the question is unknown, even if all specialists in the area have it in mind". Six sections later in [16, x8] Tkachenko writes that \it is even more surprising that the following problem of Arhangel'skii [1, 3.11] is open: does every Hausdorff first countable paratopological group admit a weaker metrizable topology?" In this paper we will give surprisingly simple affirmative answers to both open problems. In fact, our principal results hold not only for paratopological groups but also for topological monoids with open shifts and, more generally, for topological spaces whose topology is generated by a normal quasi-uniformity. Now let us recall the necessary definitions related to quasi-uniformities (see [6], [8] and [9] for more information). For a subset A ⊂ X of a topological space by clX A and intX A we denote the closure and interior ◦ ◦ of A in X. The sets clX A, intX A and intX clX A will be also denoted by A, A , and A , respectively. Let X be a topological space. A subset U ⊂ X × X containing the diagonal ∆X = f(x; y) 2 X × X : x = yg is called an entourage on X. Given two entourages U; V ⊂ X × X let UV = (x; z) 2 X × X : 9y 2 X such that (x; y) 2 U and (y; z) 2 V be their composition and U −1 = f(y; x):(x; y) 2 Ug be the inverse entourage to U. 1991 Mathematics Subject Classification. 54D10; 54D15; 54E15; 22A30. Key words and phrases. Tychonoff space, regular space, completely regular space, semiregular space, Hausdorff space, functionally Hausdorff space, semi-Hausdorff space, separation axiom, quasi-uniformity, paratopological group, topological monoid. The first author has been partially financed by NCN grant DEC-2012/07/D/ST1/02087. 1 ThisAlgebra+NT+Comb+Logi is a pre-publication version of this article, which may differ from the final published version. CopyrightMay 15 restrictions 2016 12:48:11 may apply. EDT Version 2 - Submitted to PROC 2 TARAS BANAKH AND ALEX RAVSKY For an entourage U ⊂ X × X, point x 2 X and subset A ⊂ X, the set B(x; U) = fy 2 X :(x; y) 2 S Ug is called the U-ball centered at x, and the set B(A; U) = a2A B(a; U) is the U-neighborhood of ◦ A. It will be convenient to denote the sets B(A; U), B(A; U)◦ and B(A; U) by B(A; U), B◦(A; U) ◦ and B (A; U), respectively. A quasi-uniformity on a set X is a family U of entourages on X such that: • for any U; V 2 U there exists W 2 U such that W ⊂ U \ V ; • for any U 2 U there is V 2 U such that VV ⊂ U; • for every U 2 U, any entourage V ⊂ X × X containing U belongs to U. A quasi-uniformity U on X is called a uniformity if U = U −1, where U −1 = fU −1 : U 2 Ug. A subfamily B ⊂ U is called a base of a quasi-uniformity U if each entourage U 2 U contains some entourage B 2 B. Each quasi-uniformity U on a set X generates a topology τU on X consisting of the sets W ⊂ X such that for each point x 2 W there is an entourage U 2 U such that B(x; U) ⊂ W . Then for every point x 2 X the family fB(x; U)gU2U is a neighborhood base at x. It is clear that the topological space (X; τU ) satisfies the separation axiom T1 if and only if the quasi-uniformity U is T separated in the sense that U = ∆X . It is known (see [8] or [9]) that the topology of any topological space X is generated by a suitable quasi-uniformity. We shall say that a quasi-uniformity U on a topological space X is continuous if the topology τU generated by U is contained in the topology of X. ◦ Definition 1. A quasi-uniformity U on a topological space X is defined to be normal if A ⊂ B(A; U) for any subset A ⊂ X and any entourage U 2 U. A topological space X is called normally quasi- uniformizable if the topology of X is generated by a normal quasi-uniformity. Proposition 1. Each continuous uniformity U on a topological space X is normal. ◦ Proof. Given a subset A ⊂ X and an entourage U 2 U, we have to prove that A ⊂ B(A; U) . Choose any entourage V 2 U such that V −1V ⊂ U. It follows that for every point a 2 A the ball B(a; V ) meets the set A and hence a 2 B(A; V −1). Then B(a; V ) ⊂ B(B(A; V −1); V ) = B(A; V −1V ) ⊂ ◦ B(A; U) ⊂ B(A; U) and hence a 2 B(A; U) . In the proof of the following theorem we shall use the classical method of the proof of Urysohn's Lemma. Theorem 1. If U is a normal quasi-uniformity on a topological space X, then for every non-empty subset A ⊂ X and every entourage U 2 U there exists a continuous function f : X ! [0; 1] such that ◦ A ⊂ f −1(0) ⊂ f −1[0; 1) ⊂ B(A; U) . 1 ! Proof. Choose inductively a sequence of entourages (Un)n=0 2 U such that U0 ⊂ U and Un+1Un+1 ⊂ Un for every n 2 !. Here ! stands for the set of non-negative integer numbers and N = ! n f0g is the set of positive integers. k n Let Q2 = f 2n : k; n 2 N; 0 < k < 2 g be the set of binary fractions in the interval (0; 1). P1 rn Each number r 2 Q2 can be uniquely written as the sum r = n=1 2n for some binary sequence 1 N (rn)n=1 2 f0; 1g containing finitely many units. The sequence (rn)n2N will be called the binary Plr ri expansion of r. Since r > 0, the number lr = maxfn 2 N : rn = 1g is well-defined. So, r = i=1 2i . 1 0 For an entourage V 2 U we put V = V and V = ∆X . For every r 2 Q2 consider the entourage r U r = U r1 ··· U lr ; 1 lr which determines the closed neighborhood B(A; U r) of A. q We claim that for any rational numbers q < r in Q2 the neighborhood B(A; U ) is contained in ◦ r r the interior B (A; U ) of the neighborhood B(A; U ).
Recommended publications
  • 1.1.5 Hausdorff Spaces
    1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x).
    [Show full text]
  • Chapter 7 Separation Properties
    Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and .
    [Show full text]
  • 9 | Separation Axioms
    9 | Separation Axioms Separation axioms are a family of topological invariants that give us new ways of distinguishing between various spaces. The idea is to look how open sets in a space can be used to create “buffer zones” separating pairs of points and closed sets. Separations axioms are denoted by T1, T2, etc., where T comes from the German word Trennungsaxiom, which just means “separation axiom”. Separation axioms can be also seen as a tool for identifying how close a topological space is to being metrizable: spaces that satisfy an axiom Ti can be considered as being closer to metrizable spaces than spaces that do not satisfy Ti. 9.1 Definition. A topological space X satisfies the axiom T1 if for every points x; y ∈ X such that x =6 y there exist open sets U;V ⊆ X such that x ∈ U, y 6∈ U and y ∈ V , x 6∈ V . X U V x y 9.2 Example. If X is a space with the antidiscrete topology and X consists of more than one point then X does not satisfy T1. 9.3 Proposition. Let X be a topological space. The following conditions are equivalent: 1) X satisfies T1. 2) For every point x ∈ X the set {x} ⊆ X is closed. Proof. Exercise. 9.4 Definition. A topological space X satisfies the axiom T2 if for any points x; y ∈ X such that x =6 y 60 9. Separation Axioms 61 there exist open sets U;V ⊆ X such that x ∈ U, y ∈ V , and U ∩ V = ?. X U V x y A space that satisfies the axiom T2 is called a Hausdorff space.
    [Show full text]
  • Theory of G-T G-Separation Axioms 1. Introduction Whether It Concerns The
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2018 doi:10.20944/preprints201807.0095.v1 Theory of g-Tg-Separation Axioms Khodabocus m. i. and Sookia n. u. h. Abstract. Several specific types of ordinary and generalized separation ax- ioms of a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new class of generalized separation axioms of a generalized topological space is reported herein as a starting point for more generalized classes. Key words and phrases. Generalized topological space, generalized sepa- ration axioms, generalized sets, generalized operations 1. Introduction Whether it concerns the theory of T -spaces or Tg-spaces, the idea of adding a 1 T T Tα or a g-Tα-axiom (with α =( 0, 1, 2,):::) to the axioms for a -space( T = (Ω); ) to obtain a T (α)-space T(α) = Ω; T (α) or a g-T (α)-space g-T(α) = Ω; g-T (α) or, the idea of adding a T or a -T -axiom (with α = 0, 1, 2, :::) to the axioms g,α g g,α ( ) T T T (α) (α) T (α) T (α) for a g-space T( g = (Ω; g)) to obtain a g -space Tg = Ω; g or a g- g - (α) T (α) space g-Tg = Ω; g- g has never played little role in Generalized Topology and Abstract Analysis [17, 19, 25]. Because the defining attributes of a T -space in terms of a collection of T -open or g-T -open sets or a Tg-space in terms of a collection of Tg-open or g-Tg-open sets, respectively, does little to guarantee that the points in the T -space T or the Tg-space Tg are somehow distinct or far apart.
    [Show full text]
  • Distributive Contact Lattices: Topological Representations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com The Journal of Logic and Algebraic Programming 76 (2008) 18–34 www.elsevier.com/locate/jlap Distributive contact lattices: Topological representations Ivo Düntsch a,1, Wendy MacCaull b,1, Dimiter Vakarelov c,2, Michael Winter a,1,∗ a Department of Computer Science, Brock University, St. Catharines, ON, Canada L2S 3A1 b Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada c Department of Mathematical Logic, Sofia University, Sofia, Bulgaria Available online 11 December 2007 Abstract In order to provide a region based theory of space the notion of Boolean contact algebras has been used. However, not all of the Boolean connectives, in particular complement, are well motivated in that context. A suitable generalization of this theory is to drop the notion of complement, thereby weakening the algebraic structure from a Boolean algebra to a distributive lattice. In this paper we investigate the representation theory of that weaker notion in order to determine whether it is still possible to represent each abstract algebra as a substructure of the regular closed sets of a suitable topological space with the standard (Whiteheadean) contact relation. Furthermore, we consider additional axioms for contact and the representation of those structures in topological spaces with richer structure. © 2007 Elsevier Inc. All rights reserved. 1. Introduction This paper investigates topological representation theory for a nonclassical approach to the region based theory of space. In contrast to the classical approach in which (the notion of) point is primitive and geometric figures are sets of points, this approach adopts as its primitive the more realistic spatial notion of region (as an abstraction of a “solid” spatial body), together with some basic relations and operations on regions.
    [Show full text]
  • A Generalization of the Stone Duality Theorem
    A Generalization of the Stone Duality Theorem G. Dimov, E. Ivanova-Dimova and D. Vakarelov Department of Mathematics and Informatics, University of Sofia, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria Abstract We prove a new duality theorem for the category of precontact algebras which implies the Stone Duality Theorem, its connected version obtained in [16], the recent duality theorems from [3, 23], and some new duality theorems for the category of contact algebras and for the category of complete contact algebras. 1 Introduction This paper is a continuation of the papers [13, 15, 16] and, to some extent, of the papers [7, 8, 9, 10, 11, 12, 14, 29]. In it we prove a new duality theorem for the category of precontact algebras which implies the Stone Duality Theorem, its connected version arXiv:1603.00932v1 [math.GN] 3 Mar 2016 obtained in [16], the recent duality theorems from [3, 23], and some new duality theorems for the category of contact algebras and for the category of complete contact algebras. More precisely, we show that there exists a duality functor Ga between the category PCA of all precontact algebras and suitable morphisms between them and the category PCS of all 2-precontact spaces and suitable morphisms between them. Then, clearly, fixing some full subcategory C of the category PCA, we obtain a duality between the categories C and Ga(C). Finding categories which are isomorphic or equivalent to the category C and (or) to the category Ga(C), we obtain as corollaries the Stone Duality and the other dualities mentioned above.
    [Show full text]
  • A SEPARATION AXIOM BETWEEN SEMI-To and SEMI-T1 *
    Pro Mathematica: Vol. XI, Nos. 21-22, 1997 A SEPARATION AXIOM BETWEEN SEMI-To AND SEMI-T1 * Miguel Caldas Dedicated to Professor Chaim S. Honig on the occasion of his 70th birthday Abstract The author introduces a new separation axiom and studies so me of their basic properties. The implication of these new separation axiom among themselves and with the well known axioms semi-T 2 semi-T 1 and semi-T 0 are obtained. l. Introduction1 Semi-open sets where introduced and investigated by N. Levine [6] in 1963. In 1975, S.N. Maheshwari and R. Prasad [7] used semi-open sets to define and investigate three new separation axioms, called semi-T2o semi-T1 and semi-T0 . Moreover, they have shown that the following implications hold. ©> Universidade Federal Fluminense IMUFF, RJ-Brasil. AMS (1980) subject classification (1985-Revision): 54 DIO 1 Key Words: Topology, semi-open sets. map semi-contimwus map irresolute, sg-closed sets. Tz ~ semi- Tz J, J, T, ~ semi- T1 J, J, To ~ semi- T0 Later, in 1982 P.Bhattacharyya and B.K. Lahiri [1] used semi-open sets to define the axiom semi-T112 and further investigated the separation axioms semi-T2, semi-T1 and semi-T0 • For other properties of semi-T112 , see [4]. The purpose of this paper is to introduce a new separation axiom semi-D1 which is strictly between semi-T0 and semi-T" and discuss its relations with the axioms mentioned above. Listed below are definitions that will be utilized. We identify the separation axioms with the class of topological spaces satisfying these axioms.
    [Show full text]
  • Arxiv:Math/9810074V1 [Math.GN] 12 Oct 1998
    Unification approach to the separation axioms between ∗ T0 and completely Hausdorff Francisco G. Arenas,† Julian Dontchev‡and Maria Luz Puertas§ September 19, 2021 Abstract The aim of this paper is to introduce a new weak separation axiom that generalizes the separation properties between T1 and completely Hausdorff. We call a topological space (X,τ) a Tκ,ξ-space if every compact subset of X with cardinality ≤ κ is ξ-closed, where ξ is a general closure operator. We concentrate our attention mostly on two new concepts: kd-spaces and T 1 -spaces. 3 1 Introduction The definitions of most (if not all) weak separation axioms are deceptively simple. However, the structure and the properties of those spaces are not always that easy to comprehend. In this paper we try to unify the separation axioms between T0 and completely Hausdorff by introducing the concept of Tκ,ξ-spaces. We call a topological space (X, τ) a Tκ,ξ-space arXiv:math/9810074v1 [math.GN] 12 Oct 1998 if every compact subset of X with cardinality ≤ κ is ξ-closed where ξ is a given closure operator. With different settings on κ and ξ we derive most of the well-known separation properties ‘in the semi-closed interval [T0, T3)’. We are going to consider not only Kuratowski closure operators but more general closure operators, such as the λ-closure operator [1] for ∗1991 Math. Subject Classification — Primary: 54A05, 54D10; Secondary: 54D30, 54H05. Key words and phrases — θ-closed, δ-closed, Urysohn, zero-open, λ-closed, weakly Hausdorff, T0, T1, com- pletely Hausdorff, kc-space, kd-space, Tκ,λ-space, anti-compact.
    [Show full text]
  • The Separation Axioms We Give Two Examples of Spaces That Satisfy A
    F.l The separation axioms We give two examples of spaces that satisfy a given separation axiom but not the next stronger one. Te first is a familiar space, and the second is not. Teorem F.1. If J is uncountable, J is completely regular, but not normal. Proof. The proof follows the outline given in Exercise 9 of §32. The space RJ is of course completely regular, being a product of completel regular spaces. Le't X = Z+ ; since X is a closed subspace of RJ it suffices to show that X i not normal. WE! shall use functional notation for the elements of X rather than tuple notation. Given a finite subset B of J and given a point x of X, let U(x,B) be the set of all those elements y of X such that y(od = x( ) for all a in B. Then U(x,B) is open in X; irldeed, it is the cartesian product FU~, where U is a one-point set fr in B and U = 2+ otherwise. It is immediate that the sets U(x,B) form a basis for X, since the one-point sets form a basis for 7. Given a positive integer n, let Pn be the subset of X consisting of those maps x :J-47 such that for each i dfferent from n, -1 the set x (i) consists, of at most one element of J. (This of course implies that x In) consists of uncountably many elements of J.) The set Pn is closed, for if y is not in Pn, then there is an integer i n and distinct indices , " of J such that y(4) = y( ) = i.
    [Show full text]
  • Which Spaces Have a Coarser Connected Hausdorff Topology?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 125 (2002) 215–231 Which spaces have a coarser connected Hausdorff topology? William Fleissner, Jack Porter, Judith Roitman Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA Received 4 July 2000; received in revised form 2 October 2001 Abstract We present some answers to the title. For example, if K is compact, zero-dimensional and D | | is discrete, then K ⊕ D has a coarser connected topology iff w(K) 2 D . Similar theorems hold for ordinal spaces and spaces K ⊕ D where K is compact, not necessarily zero-dimensional. Every infinite cardinal has a coarser connected Hausdorff topology; so do Kunen lines, Ostaszewski spaces, and Ψ -spaces; but spaces X with X ⊂ βω and |βω \ X| < 2c do not. The statement “every locally countable, locally compact extension of ω with cardinality ω1 has a coarser connected topology” is consistent with and independent of ZFC. If X is a Hausdorff space and w(X) 2κ ,thenX can be embedded in a Hausdorff space of density κ. 2001 Elsevier Science B.V. All rights reserved. MSC: 54C10; 54D05; 54D35 Keywords: Connected; Condense; Ordinal; Coarser topology; Extension; Minimal Hausdorff; Franklin–Rajagopolan space 1. Goals All spaces in this paper are assumed to be Hausdorff. All ordinals (hence all cardinals) are assumed to have the order topology. For a space X,letτ(X) denote the collection of open sets of X. A Hausdorff topology σ ⊆ τ(X) is called a coarser topology.
    [Show full text]
  • 9. Stronger Separation Axioms
    9. Stronger separation axioms 1 Motivation While studying sequence convergence, we isolated three properties of topological spaces that are called separation axioms or T -axioms. These were called T0 (or Kolmogorov), T1 (or Fre´chet), and T2 (or Hausdorff). To remind you, here are their definitions: Definition 1.1. A topological space (X; T ) is said to be T0 (or much less commonly said to be a Kolmogorov space), if for any pair of distinct points x; y 2 X there is an open set U that contains one of them and not the other. Recall that this property is not very useful. Every space we study in any depth, with the exception of indiscrete spaces, is T0. Definition 1.2. A topological space (X; T ) is said to be T1 if for any pair of distinct points x; y 2 X, there exist open sets U and V such that U contains x but not y, and V contains y but not x. Recall that an equivalent definition of a T1 space is one in which all singletons are closed. In a space with this property, constant sequences converge only to their constant values (which need not be true in a space that is not T1|this property is actually equivalent to being T1). Definition 1.3. A topological space (X; T ) is said to be T2, or more commonly said to be a Hausdorff space, if for every pair of distinct points x; y 2 X, there exist disjoint open sets U and V such that x 2 U and y 2 V .
    [Show full text]
  • An Overview of Separation Axioms in Recent Research
    International Journal of Pure and Applied Mathematics Volume 76 No. 4 2012, 529-548 AP ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu ijpam.eu AN OVERVIEW OF SEPARATION AXIOMS IN RECENT RESEARCH D. Narasimhan Department of Mathematics Srinivasa Ramanujan Centre Sastra University Thanjavur, INDIA Abstract: The aim of this paper is to exhibit the recent research on sepa- ration axioms, T -space, pairwise T -space, semi star generalized W -T 1 space, S S 2 pairwise semi star generalized W -T 1 spaces and pairwise complemented spaces 2 and its properties. AMS Subject Classification: 54E55 Key Words: T -space, pairwise T -space, semi star generalized W -T 1 space, S S 2 pairwise semi star generalized W -T 1 spaces 2 1. Introduction Separation axioms are one among the most common, important and interest- ing concepts in Topology. They can be used to define more restricted classes of topological spaces. The separation axioms of topological spaces are usually denoted with the letter “T” after the German “Trennung” which means sepa- ration. Most of the weak separation axioms are defined in terms of generalized closed sets and their definitions are deceptively simple. However, the structure and the properties of those spaces are not always that easy to comprehend. The separation axioms that were studied together in this way were the axioms for Hausdorff spaces, regular spaces and normal spaces. Separation c 2012 Academic Publications, Ltd. Received: December 20, 2011 url: www.acadpubl.eu 530 D. Narasimhan axioms and closed sets in topological spaces have been very useful in the study of certain objects in digital topology [1, 2].
    [Show full text]